find a and b if 2 root 5 + root 3 / 2 root 5 minus root 3 + 2 root 5 minus root 3 / 2 root 5 + root 3 is equal to a + root 15 b
Answers
Solution :-
Solving LHS,
→ {(2√5 + √3)/(2√5 - √3)} + {(2√5 - √3)/(2√5 + √3)}
taking LCM,
→ {(2√5 + √3)² + (2√5 - √3)²} / {(2√5 - √3)(2√5 + √3)}
→ (20 + 3 + 4√15 + 20 + 3 - 4√15) / (20 - 3)
→ (46/17)
now, putting LHS = RHS,
→ (46/17) = a + b√15
→ (46/17) + 0√15 = a + b√15
comparing we get,
- a = (46/17) .
- b = 0 .
Learn more :-
(7sqrt(3))/(sqrt(10+sqrt(3)))-(2sqrt(5))/(sqrt(6)+sqrt(5))-(3sqrt(2))/(sqrt(5)+3sqrt(2))
https://brainly.in/question/32043164
if the positive square root of (√190 +√ 80) i multiplied by (√2-1) and the
product is raised to the power of four the re...
https://brainly.in/question/26618255
Answer:
Solving LHS,
→ {(2√5 + √3)/(2√5 - √3)} + {(2√5 - √3)/(2√5 + √3)}
taking LCM,
→ {(2√5 + √3)² + (2√5 - √3)²} / {(2√5 - √3)(2√5 + √3)}
→ (20 + 3 + 4√15 + 20 + 3 - 4√15) / (20 - 3)
→ (46/17)
now, putting LHS = RHS,
→ (46/17) = a + b√15
→ (46/17) + 0√15 = a + b√15
comparing we get,
a = (46/17) .
b = 0 .
Step-by-step explanation: