Math, asked by zarin3288, 9 months ago

Find a and b if 3-2√2/3+2√2=a+b√2

Answers

Answered by ishwarsinghdhaliwal
0

Answer:

a=17 and b=-12

Step-by-step explanation:

 \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  = a + b \sqrt{2}  \\ \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  = a + b \sqrt{2}  \\  \frac{(3) ^{2} + (2 \sqrt{2}) ^{2} - 2(3)(2 \sqrt{2} )   }{(3) ^{2}  - (2 \sqrt{2} ) ^{2} }  = a + b \sqrt{2} \\  \frac{9 + 8 - 12 \sqrt{2} }{9 - 8}  = a + b \sqrt{2} \\ 17 - 12 \sqrt{2}  = a + b \sqrt{2} \\

Comparing the both sides, we get

a=17 and b = -12

Similar questions