Math, asked by tanvi2116, 9 months ago

find a and b if 3+√2/3-√2=a+b√2​

Answers

Answered by shinchanisgreat
1

Answer:

 =  > 3 +  \frac{ \sqrt{2} }{3}  -  \sqrt{2 }  = a + b \sqrt{2}

  =  > 3 +  \frac{ \sqrt{2}  - 3 \sqrt{2} }{3}  = a + b \sqrt{2}

 =  > 3 -  \frac{2 \sqrt{2} }{3}  = a + b \sqrt{2}

a = 3 \:  \: and \: b =  -  \frac{2}{3}

Hope this answer helps you ^_^ !

Answered by ishwarsinghdhaliwal
1

Answer:

a=11/7 and b=6/7

Step-by-step explanation:

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}  \\ \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } \times \frac{3 +  \sqrt{2} }{3  + \sqrt{2} }  = a + b \sqrt{2} \\  \frac{(3 +  \sqrt{2}) ^{2}  }{({3})^{2} - ( \sqrt{2}) ^{2}   }  = a + b \sqrt{2} \\  \frac{9 + 2 + 6 \sqrt{2} }{9 - 2}  = a + b \sqrt{2} \\  \frac{11 + 6 \sqrt{2} }{7}  = a + b \sqrt{2} \\ \frac{11}{7}  +  \frac{6 \sqrt{2} }{7}  = a + b \sqrt{2}\\  comparing \: both \: sides \: \: we \: get \\ a =  \frac{11}{7}  \\ b =  \frac{6}{7}

Similar questions