Math, asked by snehbaisoya1, 1 month ago

Find a and b if 3-√5/ 3+2 √5= a√5 -b​

Answers

Answered by ImperialGladiator
2

Answer :

\bull \: \sf a =  \dfrac{9}{11}

\bull \sf  \: b =  \dfrac{19}{11}

Explanation :

Given,

 \sf \to \:  \dfrac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  = a \sqrt{5 }  - b

Taking L. H. S.

 \to \sf \dfrac{ 3 - \sqrt{5}}{3 + 2 \sqrt{5} }

Rationalising the denominator,

\sf \to \:  \dfrac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  \times  \dfrac{3 - 2 \sqrt{5} }{3   -  2 \sqrt{5} }  \\  \sf \to \:   \dfrac{(3 -  \sqrt{5})(3 -  2\sqrt{5}  )}{ {(3)}^{2}  -  {(2 \sqrt{5}) }^{2} }  \\  \sf \to \:   \dfrac{9 - 3 \sqrt{5}  - 6 \sqrt{5} + 10 }{9 - 20}  \\  \sf \to \:   \dfrac{1 9- 9 \sqrt{5} }{ - 11} \\ \sf \to \: \dfrac{-19 + 9\sqrt{5}}{11}

On comparing with R. H. S.

 \sf \implies \: \dfrac{-19}{ 11}  +  \dfrac{9}{11} \sqrt{5}  = a \sqrt{5}  - b \\  \therefore\sf a =  \dfrac{9}{11}  \: and \: b =  \dfrac{19}{11}

Similar questions