Math, asked by midhunlal79, 1 year ago

Find a and b, if 4+√5/4-√5
= a + bV5​

Answers

Answered by mysticd
1

Answer:

 a = \frac{21}{11}\: and \: b= \frac{8}{11}

Step-by-step explanation:

a+b\sqrt{5}\\=\frac{4+\sqrt{5}}{4-\sqrt{5}}\\=\frac{(4+\sqrt{5})(4+\sqrt{5}}{(4-\sqrt{5})(4+\sqrt{5}}\\=\frac{(4+\sqrt{5})^{2}}{4^{2}-(\sqrt{5})^{2}}\\=\frac{4^{2}+2\times 4\times \sqrt{5}+(\sqrt{5})^{2}}{16-5}\\=\frac{16+8\sqrt{5}+5}{11}\\=\frac{21+8\sqrt{5}}{11}\\=\frac{21}{11}+\frac{8}{11} \sqrt{5}

a+b\sqrt{5}= \frac{21}{11}+\frac{8}{11} \sqrt{5}

Therefore,.

 a = \frac{21}{11}\: and \: b= \frac{8}{11}

•••♪

Similar questions