Math, asked by emma18, 1 year ago

Find a and b, if √5-2/√5+2 - √5+2/√5-2 = a+b√5

Answers

Answered by Cutiepie93
92
Hello friends!!

 \frac{ \sqrt{5} - 2}{ \sqrt{5} + 2} - \frac{ \sqrt{5} + 2}{ \sqrt{5} - 2 } = a + b \sqrt{5}

First we have to rationalise the denominator.

 \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2}{ \sqrt{5} - 2 } - \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2} \times \frac{ \sqrt{5} + 2}{ \sqrt{5} + 2} = a + b \sqrt{5}

 \frac{ (\sqrt{5} - 2)( \sqrt{5} - 2) }{( \sqrt{5} + 2)( \sqrt{5} - 2) } - \frac{( \sqrt{5} + 2)( \sqrt{5} + 2) }{( \sqrt{5} -2)( \sqrt{5} + 2)} = a + b \sqrt{5}

 \frac{ {( \sqrt{5} - 2)}^{2} }{( \sqrt{5} - 2)( \sqrt{5} + 2) } - \frac{ {( \sqrt{5} + 2)}^{2} }{( \sqrt{5} + 2)( \sqrt{5} + 2) } = a + b \sqrt{5}

Using identity:

( a - b )² = a² + b² - 2ab

( a + b )² = a² + b² + 2ab

( a - b )( a + b ) = a² - b²

 \frac{ {( \sqrt{5} )}^{2} + {(2)}^{2} - 2 \times 2 \times \sqrt{5} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} } - \frac{ {( \sqrt{5} )}^{2} + {(2)}^{2} + 2 \times 2 \times \sqrt{5} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} } = a + b \sqrt{5}

 \frac{5 + 4 - 4 \sqrt{5} }{5 - 4} - \frac{5 + 4 + 4 \sqrt{5} }{5 - 4} = a + b \sqrt{5}

 \frac{9 - 4 \sqrt{5} }{1} - \frac{9 + 4 \sqrt{5} }{1} = a + b \sqrt{5}

9 - 4 \sqrt{5} - (9 + 4\sqrt{5} ) = a + b \sqrt{5}

9 - 4 \sqrt{5} - 9 - 4 \sqrt{5} = a + b \sqrt{5}

- 8 \sqrt{5} = a + b \sqrt{5}

Comparing these values,

a = 0

b = - 8

HOPE IT HELPS YOU...
Answered by DaIncredible
36
Hey friend,
Here is the answer you were looking for:
 \frac{ \sqrt{5}  - 2}{ \sqrt{5} + 2 }  -  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  - 2}  = a + b \sqrt{5}  \\  \\  on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  (\frac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2}  \times  \frac{ \sqrt{5}  - 2}{ \sqrt{5}  - 2})  - ( \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2}  \times  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  + 2} ) \\  \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  (\frac{ {( \sqrt{5} )}^{2} +  {(2)}^{2} - 2 \times  \sqrt{5}    \times 2}{ {( \sqrt{5} )}^{2} -  {(2)}^{2}  }  )-  (\frac{ {( \sqrt{5} })^{2}  +  {(2)}^{2} + 2 \times  \sqrt{5} \times 2  }{ {( \sqrt{5}) }^{2} -  {(2)}^{2}  } ) \\  \\  = ( \frac{5 + 4 - 4 \sqrt{5} }{5 - 4} ) - ( \frac{5 + 4 + 4 \sqrt{5} }{5 - 4} ) \\  \\  = ( 9 - 4 \sqrt{5} ) - (9 + 4 \sqrt{5} ) \\  \\  = 9 - 4 \sqrt{5}  - 9 - 4 \sqrt{5}  \\  \\  =  - 4 \sqrt{5}  - 4 \sqrt{5}  \\  \\    - 8 \sqrt{5}  = a + b \sqrt{5}  \\  \\ a = 1 \\  \\ b =  - 8

Hope this helps!!!!

@Mahak24

Thanks....
Similar questions