Math, asked by Rathansingh12, 3 months ago

Find a and b if a{ 2 3] + b[-1 1] = [10 5]

Answers

Answered by Seafairy
314

{\boxed {a=3,b=-4}}

{\large{\text{\underline{\underline{\red{Given :}}}}}}

a \left[\begin{array}{c}2\\3\end{array}\right] + b\left[\begin{array}{c}-1\\1 \end{array}\right] = \left[\begin{array}{c}10\\5\end{array}\right]

{\large{\text{\underline{\underline{\red{To Find :}}}}}}

a \:\:\text{ and} \:\: b

{\large{\text{\underline{\underline{\red{Solution :}}}}}}

a \left[\begin{array}{c}2\\3\end{array}\right] + b\left[\begin{array}{c}-1\\1 \end{array}\right] = \left[\begin{array}{c}10\\5\end{array}\right]

\left[\begin{array}{c}a(2)\\a(3)\end{array}\right] + \left[\begin{array}{c}b(-1)\\b(1 )\end{array}\right] = \left[\begin{array}{c}10\\5\end{array}\right]

\left[\begin{array}{c}2a\\3a\end{array}\right] + \left[\begin{array}{c}-b\\b \end{array}\right] = \left[\begin{array}{c}10\\5\end{array}\right]

\left[\begin{array}{c}2a+(-b)\\3a+b\end{array}\right] = \left[\begin{array}{c}10\\5\end{array}\right]

\left[\begin{array}{c}2a-b\\3a+b\end{array}\right]  = \left[\begin{array}{c}10\\5\end{array}\right]

2a-b=10_ _ _ _ _ (1)

3a+b = 5 _ _ _ _ _ (2)

{\text{\purple{Let}}}\:\:{\purple{(1)+(2)}}

\implies 2a-b + 3a+b = 10+5

\implies 5a - 0 =15

\implies 5a =15

\implies a = \frac{15}{5} = 3

\boxed {a=3}

{\text{\purple{To find the value of b substitute a = 3 in (1)}}}

\implies 2a-b =10

\implies 2(3)-b=10

\implies 6-b =10

\implies -b =10-6 \implies  4

\boxed {b=-4}

Answered by dk0623583
2

Answer:

ahhdjdkehejjrkskdndbdbdvdhdhd kesa lga mera joke

Similar questions