Math, asked by carolinjoby, 9 months ago

Find ‘a’ and ‘b’ if a) √5+√3√5−√3 = a-b√15

Answers

Answered by atahrv
10

Answer:

a=4 and b=(-1)

Step-by-step explanation:

Given:-

\frac{\sqrt{5}+\sqrt{3}  }{\sqrt{5}-\sqrt{3}}=a-b\sqrt{5}

To Find:-

a and b

Formula Used:-

(a)²-(b)²=(a+b)(a-b)

Solution:-

\frac{\sqrt{5}+\sqrt{3}  }{\sqrt{5}-\sqrt{3}}=a-b\sqrt{5}

LHS:-

\frac{\sqrt{5}+\sqrt{3}  }{\sqrt{5}-\sqrt{3}}

Rationalising the Denominator:-

\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}+\sqrt{3})  }{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}

\frac{5+3+2\sqrt{15} }{(\sqrt{5})^2-(\sqrt{3})^2  }

\frac{8+2\sqrt{15} }{5-3}

\frac{2(4+\sqrt{15} )}{2}

4+\sqrt{15} =a-b\sqrt{15}

From substituting the values of a and b, we get:-

a=4 and b=(-1)

Similar questions