Math, asked by JudithMariaGiju, 1 year ago

find a and b if
 3 + \sqrt{27} + \sqrt{75} = a + b \sqrt{3}


Pls answer

Answers

Answered by Arun4403n
0

Answer:

....................

Answered by Salmonpanna2022
3

Step-by-step explanation:

 \bf \underline{Given-} \\

\textsf{3 + √27 + √75 = a + b√3} \\

 \bf \underline{To \: find-} \\

\textsf{the value of a and b in given equation.} \\

 \bf \underline{Solution-} \\

\textsf{We have,} \\

 \rm{3 +  \sqrt{27} +  \sqrt{75}  } \\

\textsf{Here,}

\textsf{√27 can be written as √9×3 = 3√2.} \\

\textsf{√75 can be written as √25×3 = 5√3.} \\

\textsf{then,}

 \rm{ \implies \: 3 + 3 \sqrt{3} + 5 \sqrt{3}  } \\

 \rm{ \implies \: 3 + (3 + 5) \sqrt{3} } \\

 \rm{ \implies}3 + 8 \sqrt{3}  \\

 \rm \therefore \: 3 + 8 \sqrt{3}  = a + b \sqrt{c}  \\

\textsf{On comparing with RHS we notice that} \\

\textsf{the value of a = 3 and b = 8,}

Similar questions