Find a and b, if
(x+1) and (x+2) are the factors of (x^3 +3x^2 -2ax+b).
Answers
Answered by
2
Heya user☺☺
Putting x = -1 and x = -2 in the equation, we get
2a+b = -2
4a+b = -4
--------------
-2a = 2
a = -1 and b =0
Hope this will help☺☺
Putting x = -1 and x = -2 in the equation, we get
2a+b = -2
4a+b = -4
--------------
-2a = 2
a = -1 and b =0
Hope this will help☺☺
MonicaAhlawat:
Can you also send solution
Answered by
2
x+1
p(-1)=(-1)^3+(3*-1)^2-2a*-1+b
=-1+(9*1)+2+b
=-1+9+2+b
=10+b
x-1
p(1)=(1)^3+(3*1)^2-2a*1+b
=1+9-2a+b
=10-2a+b
10-2a+b=0
b=10+2a
10+10+2a=0
20+2a=0
2a=0-20
2a=-20
a=-20/2
a=-10
b=10+2*-10
=10-20
-10
a=-10
b=-10
=
p(-1)=(-1)^3+(3*-1)^2-2a*-1+b
=-1+(9*1)+2+b
=-1+9+2+b
=10+b
x-1
p(1)=(1)^3+(3*1)^2-2a*1+b
=1+9-2a+b
=10-2a+b
10-2a+b=0
b=10+2a
10+10+2a=0
20+2a=0
2a=0-20
2a=-20
a=-20/2
a=-10
b=10+2*-10
=10-20
-10
a=-10
b=-10
=
Similar questions