Math, asked by swashanker21, 9 months ago

Find 'a' and 'b' if (x²+x-2) is a factor of x³+10x²+ax+b

Answers

Answered by Anonymous
3

GIVEN:-

\sf\blue{x^2+x-2}

Splitting the middle term.

\sf\red{x^2+2x-x-2}

\sf\pink{x(x+2)-1(x+2)}

Hence the factors of p(x) are (x-1) and (x+2)

Now,

\sf{x-1=0}

\sf{x=1}

Put the value of x in given p(x).

\sf{(1)^3+10(1)^2+a(1)+b=0}

\sf{1+10+a+b=0}

\sf{11+a+b=0}

\sf{a+b=-11}.........1

Now,

x+2=0

x=-2

\sf{(-2)^3+10(-2)^2+a(-2)+b=0}

\sf{-8+40-2a+b=0}

\sf{-2a+b=-32}...........2

Now,

Subtracting the eq 1 and 2.

a+b-(-2a+b)=-11-(-32)

a+b+2a-b=21

 3a=21

 a=7

Now put the value of a in eq 1.

 a+b=-11

 7+b=-11

 b=-18

Hence, The value of a and b is 7 and -18.

Similar questions