Math, asked by aryan13733, 2 months ago

Find a and b. please answer​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{4 +  \sqrt{45} }{4 -  \sqrt{45} }  = a + b \sqrt{5}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:a \: and \: b

Concept Used :-

Method of Rationalization

Identities Used :-

 \red{ \boxed{ \sf{ {(x + y)}^{2}  \:  =  \:  {x}^{2} +  {y}^{2} + 2xy  }}}

 \red{ \boxed{ \sf{ (x + y)(x - y) \:  = \:  {x}^{2}  -  {y}^{2} }}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{4 +  \sqrt{45} }{4 -  \sqrt{45} }  = a + b \sqrt{5}

can be rewritten as

\rm :\longmapsto\:\dfrac{4 +  \sqrt{3 \times 3 \times 5} }{4 -  \sqrt{3 \times 3 \times 5} }  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{4 +  3 \sqrt{5} }{4 -  3 \sqrt{5}  }  = a + b \sqrt{5}

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{4 +  3 \sqrt{5} }{4 -  3 \sqrt{5}  } \times  \dfrac{4  +  3 \sqrt{5} }{4  +  3 \sqrt{5} }   = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{(4 +  3 \sqrt{5} )^{2} }{ {4}^{2}  -  (3 \sqrt{5})^{2}   }  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{16 + 45 + 24 \sqrt{5}  }{16  -  45}  = a + b \sqrt{5}

\rm :\longmapsto\:\dfrac{61 + 24 \sqrt{5}  }{ - 29}  = a + b \sqrt{5}

\rm :\longmapsto\: -  \: \dfrac{61}{29}  \:  -  \: \dfrac{24}{29} \sqrt{5}   = a + b \sqrt{5}

So, On comparing, we get

\bf :\longmapsto\:a \:  =  -  \: \dfrac{61}{29}  \:  \:  \: and \:  \:   \: b = \:  -  \: \dfrac{24}{29}

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by Anonymous
1

a =  -  \frac{61}{29}  \\  \\ b =  -  \frac{24}{29}

Refer the attachment for complete answer ✔️

Attachments:
Similar questions