Math, asked by WãĶěŮp1, 1 year ago

find a and b rational number
plzzz plzzz anyone else
i will mark as brainliest ⭐⭐⭐⭐⭐⭐
30 points....

Attachments:

Answers

Answered by DaIncredible
7
Hey friend,
Here is the answer you were looking for:
 \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  = a \sqrt{5}  + b \\

We can write it as,

 =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  = a \sqrt{5}  + b

On rationalizing the denominator we get,

 =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  \\

Using the identities :

 {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{ {(2)}^{2} +  {( \sqrt{5} )}^{2}  - 2(2)( \sqrt{5}  )}{ {(2)}^{2} -  {( \sqrt{5} )}^{2}  }  \\  \\  =  \frac{4 + 5 - 4 \sqrt{5} }{4 - 5}  \\  \\  =  \frac{9 - 4 \sqrt{5} }{ - 1}  \\  \\  =  - (9 - 4 \sqrt{5} ) \\  \\  =  - 9 + 4 \sqrt{5}  \\  \\ 4 \sqrt{5}  - 9 = a \sqrt{5}  + b \\  \\ a = 4 \:  :  \: b =  - 9

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

WãĶěŮp1: thanks sis right answer
abhi569: Thanks??
DaIncredible: thanks bro. glad to helo
DaIncredible: help*
DaIncredible: haan thanks for compli babaji
DaIncredible: =P
DaIncredible: comple*
abhi569: Ok munni
DaIncredible: xD
abhi569: (:
Answered by Anonymous
6
⭐⭐Hello friend..Ur answer is here⤵⤵

 \frac{2 - \sqrt{5} }{2 + \sqrt{5} } \\ \\ multiplying \: by \: 2 - \sqrt{5} in \: numerator<br /><br />\: and \: dinominator \\ \\ \frac{ {(2 - \sqrt{5} )}^{2} }{4 - 5} \\ \\ \frac{4 + 5 - 4 \sqrt{5} }{ - 1} \\ \\ \frac{9 - 4 \sqrt{5} }{ - 1} \\ \\ - 9 + 4 \sqrt{5} \\ \\ 4 \sqrt{5 } - 9 \\ \\ compare \: with \: a \sqrt{5} + b \: \: we \: get \\ \\ a = 4 \: \: and \: b = - 9

I HOPE IT IS HELPFUL TO YOU ☺

WãĶěŮp1: you also thanks bro right answer
DaIncredible: great sir ✌
Anonymous: Ur wlcm wakeup1
Anonymous: and thanks mahak24
WãĶěŮp1: ☺☺☺
DaIncredible: =D
Similar questions