Math, asked by akshayredy06, 9 months ago

Find a and b
 \frac{ \sqrt{7} - 2 }{ \sqrt{7}  +  2 }  = a \sqrt{7}  + b

Answers

Answered by Vamprixussa
8

Given

\sf \dfrac{\sqrt{7}-2 }{\sqrt{7}+2 } = a\sqrt{7}+b

Solving the LHS side, we get,

\implies\sf \dfrac{\sqrt{7}-2 }{\sqrt{7}+2 }

\implies\sf \dfrac{\sqrt{7}-2 }{\sqrt{7}+2 } \times  \dfrac{\sqrt{7}-2 }{\sqrt{7}-2 }

\implies\sf \dfrac{(\sqrt{7}-2 )^{2} }{(\sqrt{7})^{2}-(2)^{2}  }

\implies \sf \dfrac{7-4\sqrt{7}+4 }{7-4}

\implies \sf \dfrac{11-4\sqrt{7} }{3}

\implies \sf \dfrac{11}{3} -\dfrac{4\sqrt{7} }{3}

\implies \boxed{\boxed{\bold{ b = \dfrac{11}{3} }}}}

\implies \boxed{\boxed{\bold{a = \dfrac{-4}{3} }}}}}}}}}

                                                         

Answered by Anonymous
6

\huge\mathfrak{Answer:}

Given:.

  • We have been given that \sf{\dfrac{ \sqrt{7} - 2 }{ \sqrt{7} + 2 } = a \sqrt{7} + b}

To Find:

  • We need to find the value of a and b.

Solution:

As it is given that

t \sf{\dfrac{ \sqrt{7} - 2 }{ \sqrt{7} + 2 } = a \sqrt{7} + b}

Taking LHS, we have

 \sf{ \dfrac{ \sqrt{7}  - 2}{ \sqrt{7}  + 2} }

On rationalizing the denominator, we have

 \implies\sf{  \dfrac{ \sqrt{7} - 2 }{ \sqrt{7}  + 2}  \times  \dfrac{ \sqrt{7} - 2 }{ \sqrt{7} - 2 }}

\implies\sf{\dfrac{(\sqrt{7}-2)^{2}  }{(\sqrt{7} )^{2} -(2)^{2} } }

 \implies\sf{ \dfrac{7 -  \sqrt[4]{7} + 4 }{7 - 4}}

 \implies\sf{ \dfrac{11 -  \sqrt[4]{7} }{3}}

 \implies\sf{ \dfrac{11}{3}  -  \dfrac{ 4\sqrt{7} }{3} }

 \sf{Hence, \: a \:  =  \dfrac{ - 4}{3} and \: b \:  =  \dfrac{11}{3} }

Similar questions