Math, asked by rayaanlone, 10 months ago

Find a and d for an arithmetic sequence where the 4th term is 9 and the 5th term is 7

Answers

Answered by BrainlyPopularman
7

GIVEN :

• 4th term of A.P. = 9

• 5th term of A.P. = 7

TO FIND :

Value of First term (a) = ?

Value of Common difference (d) = ?

SOLUTION :

• We know that If First term (a) , Common difference (d) and total number of term (n) then nth term

 \\  \:  \:  \longrightarrow \:  \: \large { \boxed{ \bold{T_{n} = a + (n - 1)d}}} \\

• According to the first condition –

 \\  \implies  { \bold{T_{4} = 9}} \\

 \\  \implies  { \bold{a + (4 - 1)d = 9}} \\

 \\  \implies  { \bold{a +3d = 9}} \\

 \\  \implies  { \bold{a = 9 - 3d \:  \:  \:  -  -  - eq.(1)}} \\

• According to the second condition –

 \\  \implies  { \bold{T_{5} = 7}} \\

 \\  \implies  { \bold{a + (5- 1)d = 7}} \\

 \\  \implies  { \bold{a +4d = 7}} \\

• Using eq.(1) –

 \\  \implies  { \bold{(9 - 3d)+4d = 7}} \\

 \\  \implies  { \bold{9  + d = 7}} \\

 \\  \implies  { \bold{ d = 7 - 9}} \\

 \\  \implies \large  { \boxed{ \bold{ d =  - 2}}} \\

• Put the value of 'd' in eq.(1) –

 \\  \implies  { \bold{a = 9 - 3( - 2) \:  }} \\

 \\  \implies  { \bold{a = 9  + 6 \:  }} \\

 \\  \implies \large  { \boxed{ \bold{ a=  15}}} \\

Answered by Anonymous
41

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • 4th term AP = 9
  • 5th term of AP = 7

{\bf{\blue{\underline{To\:Find:}}}}

  • a = ?
  • d = ?

{\bf{\blue{\underline{Formula\:Used:}}}}

{\bigstar \:  \: {\boxed{\boxed{\green{ \sf{ \:  a_{n} = a + (n - 1)d}}}}}}

  • Where an is the nth term of AP.
  • a is the first term.
  • d is common difference.
  • n is number of terms.

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{  a_{4}  = a + (4 - 1)d}} \\ \\

 : \implies{\sf{  a + (4 - 1)d = 9}} \\ \\

 : \implies{\sf{  a + 3d = 9......(1)}} \\ \\

___________________________________

 : \implies{\sf{  a_{5}  = a + (5- 1)d}} \\ \\

 : \implies{\sf{  a_{5}  = a + (4)d}} \\ \\

 : \implies{\sf{    a + 4d = 7.......(2)}} \\ \\

___________________________________

By Substitution method,

From (1),

 : \implies{\sf{    a = 9-3d.....(3)}} \\ \\

{\bf{\blue{\underline{Put\:the\:Value\: of\:a\: in\:eq\:(2):}}}}

 : \implies{\sf{     9- 3d + 4d = 7}} \\ \\

 : \implies{\sf{     9 + d = 7}} \\ \\

 : \implies{\sf{      d = 7 - 9}} \\ \\

 : \implies \boxed{\sf{      d = -2}} \\ \\

Now put the value of d in (3)

 : \implies{\sf{      a = 9 - 3( - 2)}} \\ \\

 : \implies{\sf{      a = 9  + 6}} \\ \\

 : \implies\boxed{\sf{      a = 15}} \\ \\

Hence, a = 15 and d = -2

Similar questions