Math, asked by melvinsam6832, 9 months ago

Find a,b,and c such that following numbers are in AP:a,7,b,23,c.

Answers

Answered by Anonymous
98

Answer:

Given:

• a, 7, b, 23 and c are in AP.

Find:

• Find value of a, b and c.

Calculations:

• (a, 7, b, 23 and c) are in AP.

Common difference:

• [(7 - a) = (b - 7) = (23 - b) = (c - 23)]

Taking terms of second and third:

⇒ b - 7 = 23 - b

⇒ 2b = 30

[b = 15]

Taking terms of first and second:

⇒ b - 7

⇒ [(7 - a) = (15 - 7)]

⇒ (7 - a) = 8

⇒ [a = - 1]

Taking terms of third and fourth:

⇒ [(23 - b) = (c - 23)]

⇒ [(23 - 15) = (c - 23)]

⇒ 8 = (c - 23)

⇒ (8 + 23) = 31

[c = 31]

Therefore, the vaule of a, b and c are = -1, 15 and 31.

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:a=-1}}}

\green{\tt{\therefore{Value\:of\:b=15}}}

\green{\tt{\therefore{Value\:of\:c=31}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A.P = a.7.b.23.c \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Value \: of \: a,b \: and \: c = ?

• According to given question :

 \tt \circ \:  a_{1} = a \\  \\  \tt \circ \:  a_{2} = 7\\  \\\tt \circ \:  a_{3} = b \\  \\\tt \circ \:  a_{4} = 23 \\  \\\tt \circ \:  a_{5} = c \\ \\  \bold{As \: we \: know \: that}  \\  \tt:  \implies 2 a_{2} =  a_{1} +  a_{3} \\  \\ \tt:  \implies 2 \times 7 = a + b \\  \\ \tt:  \implies a + b = 14 -  -  -  -  - (1) \\  \\  \bold{Similarly : } \\ \tt:  \implies 2 a_{3} =  a_{2} +  a_{4} \\  \\ \tt:  \implies 2b = 7 + 23 \\  \\ \tt:  \implies b =  \frac{30}{2}  \\  \\  \green{\tt:  \implies b = 15} \\  \\  \bold{Similarly : } \\ \tt:  \implies 2 a_{4} =  a_{3} +  a_{5} \\  \\ \tt:  \implies 2 \times 23 = b + c \\  \\ \tt:  \implies 46 = 15 + c \\  \\ \tt:  \implies c = 46 - 15 \\  \\  \green{\tt:  \implies c = 31} \\  \\  \text{Putting \: value \: of \: b \: in \: (1)} \\ \tt:  \implies a + 15 = 14 \\  \\ \tt:  \implies a = 14 - 15 \\  \\  \green{\tt:  \implies a =  - 1}

Similar questions