Find a b + BC + CA if a + b + c = 29 and a² + b² + c² = 35
Answers
Answered by
6
Correction in question :
Q. Find ( ab + bc + ca ) if ( a + b + c = 29 ) and ( a² + b² + c² = 35 ) .
To solve these types of problems you just need to concentrate on given things and what is to find.
Here we go,
Given,
⇒ ( a² + b² + c² ) = 35 ------- ( 1 )
⇒ ( a + b + c ) = 29 ------- ( 2 )
Squaring both sides,
⇒ ( a + b + c )² = 29²
⇒a² + b² + c² + 2ab + 2bc + 2ac = 841
⇒ ( a² + b² + c² ) + 2( ab + bc + ac ) = 841
Substitute the value of eq.( 1 ),
⇒ 35 + 2( ab + bc + ac ) = 841
⇒ 2( ab + bc + ca ) = 841 - 35
⇒ 2( ab + bc + ca ) = 806
⇒( ab + bc + ca ) = 806 ÷ 2
•°• ( ab + bc + ca ) = 403
Verification :
⇒ ( a + b + c ) = 29
Squaring both sides,
⇒ ( a + b + c )² = 29²
⇒ a² + b² + c² + 2ab + 2bc + 2ac = 841
⇒ a² + b² + c² + 2( ab + bc + ca ) = 841
⇒ 35 + 2 ( 403 ) = 841
⇒ 35 + 806 = 841
•°• 841 = 841
Verified !!
Identity used :
⇒( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac
The final answer is 403.
Q. Find ( ab + bc + ca ) if ( a + b + c = 29 ) and ( a² + b² + c² = 35 ) .
To solve these types of problems you just need to concentrate on given things and what is to find.
Here we go,
Given,
⇒ ( a² + b² + c² ) = 35 ------- ( 1 )
⇒ ( a + b + c ) = 29 ------- ( 2 )
Squaring both sides,
⇒ ( a + b + c )² = 29²
⇒a² + b² + c² + 2ab + 2bc + 2ac = 841
⇒ ( a² + b² + c² ) + 2( ab + bc + ac ) = 841
Substitute the value of eq.( 1 ),
⇒ 35 + 2( ab + bc + ac ) = 841
⇒ 2( ab + bc + ca ) = 841 - 35
⇒ 2( ab + bc + ca ) = 806
⇒( ab + bc + ca ) = 806 ÷ 2
•°• ( ab + bc + ca ) = 403
Verification :
⇒ ( a + b + c ) = 29
Squaring both sides,
⇒ ( a + b + c )² = 29²
⇒ a² + b² + c² + 2ab + 2bc + 2ac = 841
⇒ a² + b² + c² + 2( ab + bc + ca ) = 841
⇒ 35 + 2 ( 403 ) = 841
⇒ 35 + 806 = 841
•°• 841 = 841
Verified !!
Identity used :
⇒( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac
The final answer is 403.
Answered by
27
✴✴✴✴
--------------------------------------------------------
✴✴⬇⏬⤵
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
▶⏩ It is given that:-)
▶⏩ Now,
↪➡
↪➡
▶⏩using identity :-)
↪➡
↪➡
↪➡
↪➡
↪➡
✅✅ Hence, it is finded. ✔✔
✴✴✴✴
☺☺☺✌✌✌.
--------------------------------------------------------
✴✴⬇⏬⤵
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
▶⏩ It is given that:-)
▶⏩ Now,
↪➡
↪➡
▶⏩using identity :-)
↪➡
↪➡
↪➡
↪➡
↪➡
✅✅ Hence, it is finded. ✔✔
✴✴✴✴
☺☺☺✌✌✌.
Anonymous:
Mind bol....
Similar questions