Math, asked by keshavmajhi312, 1 year ago

Find a b + BC + CA if a + b + c = 29 and a² + b² + c² = 35

Answers

Answered by Anonymous
6
Correction in question :

Q. Find ( ab + bc + ca ) if ( a + b + c = 29 ) and ( a² + b² + c² = 35 ) .

To solve these types of problems you just need to concentrate on given things and what is to find.

Here we go,

Given,

⇒ ( a² + b² + c² ) = 35 ------- ( 1 )

⇒ ( a + b + c ) = 29 ------- ( 2 )

Squaring both sides,

⇒ ( a + b + c )² = 29²

⇒a² + b² + c² + 2ab + 2bc + 2ac = 841

⇒ ( a² + b² + c² ) + 2( ab + bc + ac ) = 841

Substitute the value of eq.( 1 ),

⇒ 35 + 2( ab + bc + ac ) = 841

⇒ 2( ab + bc + ca ) = 841 - 35

⇒ 2( ab + bc + ca ) = 806

⇒( ab + bc + ca ) = 806 ÷ 2

•°• ( ab + bc + ca ) = 403

Verification :

⇒ ( a + b + c ) = 29

Squaring both sides,

⇒ ( a + b + c )² = 29²

⇒ a² + b² + c² + 2ab + 2bc + 2ac = 841

⇒ a² + b² + c² + 2( ab + bc + ca ) = 841

⇒ 35 + 2 ( 403 ) = 841

⇒ 35 + 806 = 841

•°• 841 = 841

Verified !!

Identity used :

⇒( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac

The final answer is 403.
Answered by Anonymous
27
✴✴ \huge \bf{HEY \: FRIENDS!!}✴✴

--------------------------------------------------------

✴✴ \huge \bf \underline{Here \: is \: your \: answer↓}⬇⏬⤵

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

▶⏩ It is given that:-)

 \boxed{a + b + c = 29.}
 \boxed{ {a}^{2} + {b}^{2} + {c}^{2} = 35.}

▶⏩ Now,

↪➡ \bf{a + b + c = 29.}

 \huge \boxed{squaring \: both \: side }

↪➡ \bf{ {(a + b + c)}^{2} = {(29)}^{2}.}

▶⏩using identity :-)

 \huge \boxed{ {(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca).}

↪➡ \bf{ {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca) = 841.}

↪➡ \bf{35 + 2(ab + bc + ca) = 841.}

↪➡ \bf{2(ab + bc + ca) = 841 - 35.}

↪➡ \bf{2(ab + bc + ca) = 806.}

↪➡ \bf{ ab + bc + ca = \frac{806}{2}.}

 \huge \bf{ ab + bc + ca = 403.}

✅✅ Hence, it is finded. ✔✔

✴✴ \huge \boxed{THANKS}✴✴

☺☺☺ \huge \bf \underline{Hope \: it \: is \: helpful \: for \: you}✌✌✌.

Anonymous: Mind bol....
Similar questions