Find (A+b+c)^3 ======
Answers
Answered by
1
Hi friend here is your answer.
*************************************
(a+b+c)³=(a³+b³+c³)+3a(ab+ac+bc)+ 3b(ab+bc+ac) +3c(ac+bc+ab)−3abc
(a+b+c)³=(a³+b³+c³)+3(a+b+c)(ab+ac+bc)−3abc
(a+b+c)³=(a³+b³+c³)+3[(a+b+c)(ab+ac+bc)−abc]
########################
*************************************
(a+b+c)³=(a³+b³+c³)+3a(ab+ac+bc)+ 3b(ab+bc+ac) +3c(ac+bc+ab)−3abc
(a+b+c)³=(a³+b³+c³)+3(a+b+c)(ab+ac+bc)−3abc
(a+b+c)³=(a³+b³+c³)+3[(a+b+c)(ab+ac+bc)−abc]
########################
subhashpandyamandal:
You are genius
Answered by
0
let a+b be x
(x+c)^3=x^3 +c^3+3x^2c+3xc^2
=(a+b)^3+c^3+3(a+b)^2c+3(a+b)×c^2
=a^3+b^3+c^3 +3ab(a+b)+3(a+b)^2c
+3(a+b)×c^2
=a^3+b^3+c^3+3(a+b){ab+ac+bc+c^2}
=a^3+b^3+c^3+3(a+b){a(b+c)+c(b+c)}
=a^3+b^3+c^3+3(a+b)(b+c)(a+c)
Hence, (a+b+c)^3=a^3+b^3+c^3+3*(a+b)(b+c)
(a+c)
(x+c)^3=x^3 +c^3+3x^2c+3xc^2
=(a+b)^3+c^3+3(a+b)^2c+3(a+b)×c^2
=a^3+b^3+c^3 +3ab(a+b)+3(a+b)^2c
+3(a+b)×c^2
=a^3+b^3+c^3+3(a+b){ab+ac+bc+c^2}
=a^3+b^3+c^3+3(a+b){a(b+c)+c(b+c)}
=a^3+b^3+c^3+3(a+b)(b+c)(a+c)
Hence, (a+b+c)^3=a^3+b^3+c^3+3*(a+b)(b+c)
(a+c)
Similar questions