Math, asked by vka94732, 9 months ago

find a:b, if (3a+b):(a+b)=9:5​

Answers

Answered by tennetiraj86
4

Answer:

answer for the given problem is given

Attachments:
Answered by BrainlyPopularman
12

GIVEN :

  \bf (3a+b):(a+b)=9:5

TO FIND :

  \bf a:b =?

SOLUTION :

 \bf \implies (3a+b):(a+b)=9:5

 \bf \implies \dfrac{(3a+b)}{(a+b)}= \dfrac{9}{5}

• We should write this as –

 \bf \implies \dfrac{(2a )+ (a+b)}{(a+b)}= \dfrac{9}{5}

 \bf \implies \dfrac{(2a )}{(a + b)} +   \cancel\dfrac{(a+b)}{(a+b)}= \dfrac{9}{5}

 \bf \implies \dfrac{(2a )}{(a + b)} +   1= \dfrac{9}{5}

 \bf \implies \dfrac{(2a )}{(a + b)}= \dfrac{9}{5} - 1

 \bf \implies \dfrac{(2a )}{(a + b)}= \dfrac{9 - 5}{5}

 \bf \implies \dfrac{(2a )}{(a + b)}= \dfrac{4}{5}

 \bf \implies \dfrac{a}{a + b}= \dfrac{4}{5 \times 2}

 \bf \implies \dfrac{a}{a + b}= \dfrac{2}{5}

 \bf \implies \dfrac{a + b}{a}= \dfrac{5}{2}

 \bf \implies  \cancel\dfrac{a}{a} +\dfrac{b}{a}= \dfrac{5}{2}

 \bf \implies 1 +\dfrac{b}{a}= \dfrac{5}{2}

 \bf \implies \dfrac{b}{a}= \dfrac{5}{2} - 1

 \bf \implies \dfrac{b}{a}= \dfrac{5 - 2}{2}

 \bf \implies \dfrac{b}{a}= \dfrac{3}{2}

 \bf \implies \dfrac{a}{b}= \dfrac{2}{3}

▪︎ Hence ,  \bf  \:  \:  \:  \large{ \boxed{ \bf a:b=2:3}}


Anonymous: Nice !
Similar questions