find a + b in the given question
Attachments:
siddhartharao77:
I think its 7
Answers
Answered by
1
Given a/b = root 80 - root 112/root 45 - root 63. ----------- (1)
(1) Numerator :
a = root 80 - root 112
= root 2^4 * 5 - root 2^4 * 7
= root 5 * root 2^4 - root 7 * root 2^4
= root 5 * 2^2 - root 7 * 2^4
= 4 root 5 - 4 root 7 ----------------- (1)
(2) Denominator:
b = root 45 - root 63
= root 3^2 * 5 - root 3^2 * 7
= root 3^2 * root 5 - root 3^2 * root 7
= root 9 * root 5 - root 9 * root 7
= 3 root 5 - 3 root 7 ----------------------- (2)
On substituting (2) & (3) values in (1), we get
a/b = 4 root 5 - 4 root 7/3 root 5 - 3 root 7
= 4(root 5 - root 7)/(3(root 5 - root 7)
= 4/3.
Then a + b = 4 + 3 = 7.
Therefore the value of a + b = 7.
Hope this helps!
(1) Numerator :
a = root 80 - root 112
= root 2^4 * 5 - root 2^4 * 7
= root 5 * root 2^4 - root 7 * root 2^4
= root 5 * 2^2 - root 7 * 2^4
= 4 root 5 - 4 root 7 ----------------- (1)
(2) Denominator:
b = root 45 - root 63
= root 3^2 * 5 - root 3^2 * 7
= root 3^2 * root 5 - root 3^2 * root 7
= root 9 * root 5 - root 9 * root 7
= 3 root 5 - 3 root 7 ----------------------- (2)
On substituting (2) & (3) values in (1), we get
a/b = 4 root 5 - 4 root 7/3 root 5 - 3 root 7
= 4(root 5 - root 7)/(3(root 5 - root 7)
= 4/3.
Then a + b = 4 + 3 = 7.
Therefore the value of a + b = 7.
Hope this helps!
Answered by
0
answer will be a+b=7
Similar questions