Math, asked by razirani860, 1 year ago

Find a cubic polynomial whose zero are 0,2/3,-2/3

Answers

Answered by hukam0685
13
let the zeros are
 \alpha  \:  \beta  \:  \gamma  \\  \alpha  +  \beta   + \gamma  = 0 +  \frac{2}{3}  -  \frac{2}{3}  = 0 =  \frac{ - b}{a}  \\  \alpha  \beta  \gamma  = 0( \frac{2}{3} )( -  \frac{2}{3} ) = 0 =  \frac{ - d}{a}  \\  \alpha  \beta  +  \beta  \gamma  +  \alpha  \gamma  = 0 \times  \frac{2}{3}  +  \frac{2}{3}  \times  \frac{ - 2}{3}  + 0 \times  \frac{ - 2}{3}  \\  =  -  \frac{4}{9}  =  \frac{c}{a}  \\  so \: the \: polynomial \: is\\  {x}^{3}  -  (\frac{ - b}{a})  {x}^{2}  +  \frac{c}{a} x - ( \frac{ - d}{a} ) = 0 \\  {x}^{3}  - 0 {x}^{2}  + ( \frac{ - 4}{9} )x - (0) = 0 \\  {x}^{3}  -  \frac{4}{9} x = 0 \\ 9 {x}^{3}  - 4x = 0 \:  \:  \: is \: the \: answer
Similar questions