Math, asked by tharunsankhla83, 22 days ago

find a cubic polynomial whose zeroes are - 2 - 3 and -1 ​

Answers

Answered by pbdean2005
1

Answer:

x³ + 6x² + 11x +

Step-by-step explanation:

x³ + 6x² + 11x + 6

Let the zeroes of the cubic polynomial be α, β and γ respectively. Thus,

α = (-2)

β = (-3)

γ = (-1)

Sum of roots = α + β + γ

⇒ (-2) + (-3) + (-1)

⇒ - 2 - 3 - 1

⇒ - 6

Sum of products of roots = αβ + βγ + γα

⇒ (-2)(-3) + (-3)(-1) + (-1)(-2)

⇒ 6 + 3 + 2

⇒ 11

Product of roots = αβγ

⇒ (-2) * (-3) * (-1)

⇒ 6 * (-1)

⇒ - 6

Now, cubic polynomial is given by -

= x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ

= x³ - (-6)x² + 11x - (-6)

= x³ + 6x² + 11x + 6

Hence, the required cubic polynomial is x³ + 6x² + 11x + 6.

Answered by harshwardhangjadhao
0

Answer:

x³ + 6x² + 11x + 6

Step-by-step explanation:

Let the zeroes of the cubic polynomial be α, β and γ respectively. Thus,

α = (-2)

β = (-3)

γ = (-1)

Sum of roots = α + β + γ

⇒ (-2) + (-3) + (-1)

⇒ - 2 - 3 - 1

⇒ - 6

Sum of products of roots = αβ + βγ + γα

⇒ (-2)(-3) + (-3)(-1) + (-1)(-2)

⇒ 6 + 3 + 2

⇒ 11

Product of roots = αβγ

⇒ (-2) * (-3) * (-1)

⇒ 6 * (-1)

⇒ - 6

Now, cubic polynomial is given by -

= x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ

= x³ - (-6)x² + 11x - (-6)

= x³ + 6x² + 11x + 6

Hence, the required cubic polynomial is x³ + 6x² + 11x + 6.

Similar questions