Math, asked by shrishitesh, 2 months ago

Find a cubic polynomial whose zeroes are 3, – 1, – 1​

Answers

Answered by 12thpáìn
282

\underline{\bf{Given}}

  • Zeroes of Cubic polynomial:- 3,-1,-1

\underline{\bf{To Find}}

  • Cubic Polynomial

\\Let , \\  \alpha  = 3 \:  \:  \:  \:  \:  \beta  =  - 1 \: \:  \:  \:  \:   \gamma  =  - 1\\\\

\\ \text {{if  a   β  γ are the zeros of a cubic polynomial f (x) \: then}}\\

 \\\sf{f(x) =  {x}^{3}  -  (\alpha   + \beta  +  \gamma ) {x}^{2}  + ( \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha )x -  \alpha  \beta  \gamma }

 \sf{f(x) =  {x}^{3}  -  (3  + ( - 1) +  ( - 1)) {x}^{2}  + ( 3 \times  - (1)  +  ( -1 )   \times ( - 1)+  ( - 1) \times 3)x - (3 \times ( - 1)( - 1) }

\sf{f(x) =  {x}^{3}  -  (3   - 2) {x}^{2}  + (  - 3 +   1 - 3)x - 3}

\sf{f(x) =  {x}^{3}  -   {x}^{2}  - 5x - 3}\\\\

\text{\sf{The cubic polynomial whose zeroes are 3, – 1, – 1}}\\\bf{\pink{f(x) = x³-x²-5x-3}}

Similar questions