Math, asked by khushigoyal96, 2 months ago

Find a cubic polynomial whose zeros are 1/2, 1 and -3​

Answers

Answered by 12thpáìn
399

Given

  • \sf{Zeros ~of~ Cubic~ polynomial ~are1/2,3and-3.}

To find

  • Cubic Polynomial

Let,

  • alpha=1/2
  • beta=1
  • gamma=-3

_____________________

\\{\sf Sum  \: of  \:zeroes \:  =   \alpha  +  \beta  +  \gamma }

{\sf  Sum  \: of  \:zeroes \:  =   \frac{1}{2} + 1  - 3   }

{\sf  Sum  \: of  \:zeroes \:  =   \frac{1 + 2 - 3}{2}   }

{\sf  Sum  \: of  \:zeroes \:  =  0   }\\

_____________________

\\{\sf  Sum \:  of  \: Product \:  of  \: zeros=  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha }

{\sf  Sum \:  of  \: Product \:  of  \: zeros=   \frac{1}{2}   \times 1 +  1 \times  (- 3  )+ (3) \times  \frac{1}{2}  }

{\sf  Sum \:  of  \: Product \:  of  \: zeros=   \frac{1}{2}     - 3 -  \frac{3}{2}  }

{\sf  Sum \:  of  \: Product \:  of  \: zeros=   \frac{1 - 6 - 3}{2}      }

{\sf  Sum \:  of  \: Product \:  of  \: zeros=   \frac{ - 8}{2}      }

{\sf  Sum \:  of  \: Product \:  of  \: zeros=   - 4      }\\

_____________________

\\{\sf  Product \:  of  \: zeros=    \alpha  \beta  \gamma       }

{\sf  Product \:  of  \: zeros=     \frac{1}{2}   \times 1 \times  - 3   }

{\sf  Product \:  of  \: zeros=     \frac{ - 3}{2}      }\\

_____________________

\\\\\\

We know that:-

  • A cubic polynomial when the sum of zeros , sum of products of zeros and Product of zeros are Given by

\\\\{ \sf{f(x)=k \{ {x}^{3}  - (sum  \: of \:  zeros) {x}^{2}  + (sum  \: of \:  products  \: of  \: zeros)x - Product \:  of  \: zeros \}}}

{ \sf{f(x)=k \{ {x}^{3}  - (0) {x}^{2}  + ( - 4)x - ( \frac{ - 3}{ \:  \: 2} ) \}}}

{ \sf{f(x)=k \{ {x}^{3}   - 4x  +  \frac{  3}{ 2}\}}}\\\\

  • The Required Cubic polynomial f(x)=x³-4x+3/2.
Similar questions