Science, asked by Anonymous, 23 days ago

find a cubic polynomial whose zeros are 1, - 2 and 3

koi hai toh maths ke thAnks dedo ​

Answers

Answered by SweetestBitter
2

__________________________

\huge{\textbf{\textsf{{☆ AN}}{\purple{SW}}{\pink{ER ☆} \: {{}{:}}}}}

GIVEN :

Zeros of the polynomial :

α = 1, β = -2 and γ = 3

SOLUTION :

SUM OF ZEROS :

⟼ α + β + γ

= 1 - 2 + 3

= 2

SUM OF PRODUCT OF ZEROS TWO TAKEN AT A TIME :

⟼ αβ + βγ +γα

= -2 - 6 + 3

= -5

PRODUCT OF ZEROS :

⟼ αβγ

= (1)(-2)(3)

= -6

\begin{gathered}\qquad \qquad \boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:cubic \: polynomial\::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\;\: \beta\:\: γ}   \\  \\  {x}^{3}  - (α + β + γ) {x}^{2}  + (αβ + βγ +γα)x - αβγ.\\\\  \end{array}} \end{gathered}

By substituting the values,

The required Cubic polynomial is

=  {x}^{3}  - (α + β + γ) {x}^{2}  + (αβ + βγ +γα)x - αβγ. \\  \\  =  {x}^{3}  - (2) {x}^{2} + ( - 5)x - ( - 6). \\  \\  = {x}^{3}  - 2 {x}^{2}  - 5x   + 6

__________________________

Answered by rishikaar063
3

Zeros of the polynomial :

α = 1, β = -2 and γ = 3

SOLUTION :

SUM OF ZEROS :

⟼ α + β + γ

= 1 - 2 + 3

= 2

SUM OF PRODUCT OF ZEROS TWO TAKEN AT A TIME :

⟼ αβ + βγ +γα

= -2 - 6 + 3

= -5

PRODUCT OF ZEROS :

⟼ αβγ

= (1)(-2)(3)

= -6

Similar questions