Math, asked by Dharshu08, 1 year ago

find a cubic polynomial whose zeros are 3 , 1/2and -1

Answers

Answered by mysticd
99

Answer:

 \red { Required \:cubic \: polynomial :}

\green { = 2x^{3} - 5x^{2} - 4x + 3 }

Step-by-step explanation:

Let \:\alpha ,\beta \:and \:\gamma \:are \:

 zeroes \: of \: a \:cubic \: polynomial

 \alpha = 3, \beta = \frac{1}{2}\:and \: \gamma = -1\:(given)

 \pink { Required \: cubic \: polynomial}

 \pink { k(x-\alpha)(x-\beta)(x-\gamma)}

 = k( x -3)\left(x-\frac{1}{2}\right)(x+1)

 = k(x-3)(x+1)\left(x-\frac{1}{2}\right)

= k(x^{2} -2x -3)\left(x-\frac{1}{2}\right)

 = k\left( x^{3} -\frac{x^{2}}{2}-2x^{2}+x-3x+\frac{3}{2}\right)

/* We can put different values of k .

When k = 2 , the Quadratic polynomial will be

 = 2x^{3} - x^{2} -4x^{2} + 2x - 6x +3

 = 2x^{3} - 5x^{2} - 4x + 3

Therefore.,

 \red { Required \:cubic \: polynomial :}

\green { = 2x^{3} - 5x^{2} - 4x + 3 }

•••♪

Answered by wwwjitesharungawai
9

Step-by-step explanation:

a+b+y=3

ab+ by+ ya=1/2

aby=-1

k(x³-a +b+ y)x²+ab-by+ya)x-aby

Similar questions