Math, asked by Manideepbablu8408, 10 months ago

Find a height of a cylinder whose base radius is 7cm and the total surface area is 1936

Answers

Answered by rd0647764
0

Answer:

TSA OF CYLINDER=2PIRH

1936=2*22/7*7*H

1936/7=2*22/7*H

276.57=2*22/7*H

276.57*7=2*22*H

1935.99=2*22*H

1935.99/22=2*H

87.99=2*H

87.99/2=H

43.995=H

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Height\:of\:cylinder=37\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 7\: cm} \\ \\ : \implies \text{T.S.A\:of\:cylinder=}1936 \: cm^{2} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Height\: of \: cylinder(h) = ? }

• According to given question :

 \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies 1936=2 \times \frac{22}{7} \times 7(h +7) \\ \\ : \implies \frac{1936}{44} =h+7\\ \\ :\implies h+7=44\\\\ :\implies h=44-7\\\\ \green{ : \implies \text{Height\: of \: cylinder} =37\: {cm} }\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{Volume\:of\:cylinder}=\pi r^{2}h}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions