find a if the two polynomials ax^3 + 3x^2 - 9 and 2x^3 + 4x +a leaves same remaidr when divided by (x + 3)?
Answers
Answered by
71
Answer:
- Value of a is 3.
Step-by-step explanation:
Given :
- f(x) = ax³ + 3x² - 9.
- g(x) = 2x³ + 4x + a.
- [÷ (x + 3), remainder = -3]
Now, f(-3) :
⇒ a(-3)³ + 3(-3)² - 9
⇒ a(-27) + 3(9) - 9
⇒ -27a + 27 - 9
∴ -27a + 18
Now, g(-3) :
⇒ 2(-3)³ + 4(-3) + a
⇒ 2(-27) + 4(-3) + a
⇒ -54 - 12 + a
∴ -66 + a
Now, f(-3) = g(-3) :
⇒ -27a + 18 = -66 + a
⇒ -27a - a = -66 - 18
⇒ -28a = -84
⇒ a = -84/-28
∴ a = 3
Answered by
5
Given :-
ax³ + 3x² - 9
2x³ + 4x + a
To Find :-
Value of a
Solution :-
x + 3 = 0
x = 0 - 3
x = -3
Putting x = -3 in 1
a(-3)³ + 3(-3)² - 9
a(-27) + 3(9) - 9
-27a + 27 - 9
-27a + 18 (1)
Putting x = -3 in 2
2(-3)³ + 4(-3) + a
2(-27) + (-12) + a
-54 - 12 + a
-66 + a (2)
On comparing
-66 + a = -27a + 18
-66 - 18 = -27a - a
-84 = -28a
a = -84/-28
a = 3
Similar questions