Math, asked by Halpme, 9 months ago

find a locus of a point which moves such that it is equidistant from (a,b) and (b,a)​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Let the point be (h,k)

so,

 \sqrt{(h - a)^{2}  + (k - b)^{2} } =  \sqrt{(h - b)^{2} + ( k - a)^{2} }

 =  > (h - a)^{2}  - (h - b)^{2} = (k - a)^{2}  - (k - b )^{2}

 =  >  {h}^{2}  - 2ha + a^{2}  -  {h}^{2}  + 2hb -  {b}^{2}  =  {k}^{2}  - 2ka + a^{2}  -  {k}^{2}  + 2kb -  {b}^{2}

 =  > 2h(b - a) + ( {a}^{2}  -  {b}^{2} ) = 2k(b - a) + ( {a}^{2}  -  {b}^{2} )

 =  > 2h(b - a) = 2k(b - a)

 =  > h = k

Hence, the required locus y = x

Similar questions