Math, asked by kaurparveen1719, 10 months ago


Find a point on the x-axis which is equidistant from point (7,6) and (-3,4).​

Answers

Answered by MajorLazer017
6

\huge\fbox{\texttt{Answer = P(3,0)}}

  \\

 \huge\rm{\green{ Explanation :-}}

 \\

___________________________________________

Given :

The point ( say P ) lies on the x - axis. Therefore, y coordinate is 0.

Point P is equidistant from the points A(7,6) and B(-3,4).

___________________________________________

 \\

To Find :

Coordinates of the point P (on x - axis).

___________________________________________

 \\

Formula Used :

Distance Formula :-

 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

where 'd' stands for distance.

____________________________________________

 \\

How to Find :

\texttt{We\: are \:provided\: that\: the\: point \:P\: lies\: on \:x-axis. Therefore,}

\texttt{\green{coordinates\: of \:the\: point \:P = <strong>(</strong><strong>x</strong><strong>,</strong><strong>0</strong><strong>)</strong><strong>}</strong>}

\texttt{According \:to \:the \:question, }

\texttt{PA = PB (in\: terms \:of\: distance)}

\texttt{Also,} PA² = PB²

\texttt{\red{Using <strong>distance</strong><strong> </strong><strong>formula</strong><strong>,</strong>}}

\implies (x-7)^2 + (-6)^2 = (x+3)^2 + (-4)^2

 \implies x^2-14x + 49 + 36 = x^2 + 6x + 9 + 16

\implies  -14x + 85 = 6x + 25

 \implies 20x = 60

\texttt{Therefore,}

\huge\red{x = 3}

 \texttt{\orange{Then,\: coordinates \:of\:point\:are :}}

 \huge\fbox{\texttt{P(3,0)}}

Similar questions