Math, asked by prasannaRajuk, 1 year ago

Find a point on the y-axis equidistant from (-5, 2) and (9,-2).​

Answers

Answered by amitkumar44481
15

 \bold \red \star \:  \large \underline{Solution:-}\\ \\

°•° Let A and B is two points which equidistant from the point P respectively.

  \dot\:  \: A( - 5 ,2) \\  \\ </p><p></p><p>  \dot\:  \: P(0,y) \\  \\ </p><p></p><p>  \dot\:  \: B(9, - 2) \\  \\

or, \: AP=BP.

\rule{200}3

Let's apply section formula,

 \sqrt{{(x_2 - x_1) }^{2}  +{( y_2 - y_1)}^{2} } =  \sqrt{{(x_2 - x_1) }^{2}  +{( y_2 - y_1)}^{2} }. \\  \\  \sqrt{{(0  +  5) }^{2}  +{( y - 2)}^{2} } =  \sqrt{{(9 - 0) }^{2}  +{( 2 + y)}^{2} }. \\  \\

Square \:  Both \:  sides.

25 +  \cancel{ {y}^{2}}  + \cancel 4 - 4y = 81 + \cancel 4 +  \cancel{ {y}^{2}}  + 4y. \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   - 8y = 56. \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   y =   - \frac{ \cancel{56}}{ \cancel8} . \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y = 7.\\ \\

\rule{200}3

We know that distance never be negative.

therefore,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \: |y = 7.|

Attachments:
Similar questions