Math, asked by hlllooo, 8 months ago

Find a point on the y axis which is equidistant from A (2,-5) and (-4,3) . ​

Answers

Answered by BrainlyPopularman
10

TO FIND :

A point on the y - axis which is equidistant from A (2,-5) and B(-4,3) .

SOLUTION :

Let the point on y - axis is P(0 , y).

• We know that Distance between two points  \: \bf (x_1 , y_1 ) \:\: and \:\: (x_2 , y_2 ) \: is –

 \\ \large \implies{ \boxed{ \bf Distance =  \sqrt{(x_2 -x_1)^{2} +(y_2 -y_1)^{2}}}} \\

• Let's find Distance AP

 \\ \large \implies \bf AP =  \sqrt{(0 - 2)^{2} +(y - ( - 5))^{2}}\\

 \\ \large \implies \bf AP =  \sqrt{(- 2)^{2} +(y  + 5)^{2}}\\

 \\ \large \implies \bf AP =  \sqrt{4+(y  + 5)^{2}} \: \: \:\:  -  -  -eq.(1) \\

• Now Let's find BP

 \\ \large \implies \bf BP =  \sqrt{(0  -  (-4))^{2} +(y -3)^{2}}\\

 \\ \large \implies \bf BP =  \sqrt{(4)^{2} +(y - 3)^{2}}\\

 \\ \large \implies \bf BP =  \sqrt{16+(y-3)^{2}} \: \: \:\:  -  -  -eq.(2) \\

• According to the question –

 \\ \large \implies \bf AP =BP \\

• Using eq.(1) & eq.(2) –

 \\ \large \implies \bf  \sqrt{4+(y  + 5)^{2}} =\sqrt{16+(y-3)^{2}} \\

• Square on both sides –

 \\ \large \implies \bf  4+(y  + 5)^{2} =16+(y-3)^{2} \\

 \\ \large \implies \bf  (y  + 5)^{2} =12+(y-3)^{2} \\

 \\ \large \implies \bf  (y  + 5)^{2} - (y-3)^{2} =12 \\

 \\ \large \implies \bf  (y+5 +y-3)  \{y + 5 - (y-3) \} =12 \\

 \\ \large \implies \bf  (2y + 2)  \{y + 5 - y + 3 \} =12 \\

 \\ \large \implies \bf  (2y + 2)(8)=12 \\

 \\ \large \implies \bf  (2y + 2)(2)=3 \\

 \\ \large \implies \bf  (y+1)(4)=3 \\

 \\ \large \implies \bf  y= \dfrac{3}{4} - 1  \\

 \\ \large \implies{ \boxed{ \bf  y=  - \dfrac{1}{4}}} \\

▪︎ Hence , The point is (0 , - ¼).

Answered by MaIeficent
18

\large \rm \red{ \underline{ \underline {Given:-}}}

• Two points A(2, -5) and B(-4, 3)

\large \rm \blue{ \underline{ \underline {To\:Find:-}}}

• A point on the y axis which is equidistant from A (2,-5) and B(-4,3) .

\large \rm \green{ \underline{ \underline {To\:Find:-}}}

\rm the \: distance(d) \: between \: two \: points \: ( x_{1} ,y_{1}) \: and \: ( x_{2} ,y_{2}) \: is \: given \: by \: the \: formula:- \:

\rm d = \sqrt{ {( x_{2} - x_{1}) }^{2} + {( y_{2} - y_{1}) }^{2} }

As we have have to find the point on the y-axis equidistant from the points A(2, -5) and B(-4, 3)

Let us denote that point as C(x , y)

As the point lies on the y-axis, so x = 0

Let us find the distance between A to C and B to C

\rm AC = \sqrt{ {( 2 - x) }^{2} + {( - 5 - y) }^{2} }

\rm AC = \sqrt{ {( 2 - 0) }^{2} + {( - 5 - y) }^{2} }

\rm AC = \sqrt{ {( 2 ) }^{2} + {( - 5 - y) }^{2} }

\rm AC = \sqrt{ 4 + {( - 5 - y) }^{2} }

\rm BC= \sqrt{ {( - 4 - x)}^{2} + {( 3 - y) }^{2} }

\rm BC= \sqrt{ {( - 4 - 0)}^{2} + {( 3 - y) }^{2} }

\rm BC= \sqrt{ {( - 4 )}^{2} + {( 3 - y) }^{2} }

\rm BC= \sqrt{ 16 + {( 3 - y) }^{2} }

The point equidistant from y-axis

\rm \rightarrow \sqrt{ 4 + {( - 5 - y) }^{2} } = \sqrt{ 16 + {( 3 - y) }^{2} }

S.O.B.S

\rm \rightarrow { 4 + {( - 5 - y) }^{2} } = { 16 + {( 3 - y) }^{2} }

\rm \rightarrow { 4 + {( { - 5)}^{2}+ (- y) }^{2} + 2( - 5)( - y) } = { 16 + {( {3)}^{2}+ ( - y) }^{2} + 2(3)( - y) }

\rm \rightarrow { 4 + 25 + {y}^{2} +10y} = { 16 + { {9} + y }^{2} -6 y }

\rm \rightarrow { 29 +10y} = { 25 -6 y }

\rm \rightarrow { 10y + 6y} = { 25 - 29 }

\rm \rightarrow { 16y} = { - 4 }

\rm \rightarrow { y} = { \dfrac{ - 4}{16} }

\rm \rightarrow { y} = { \dfrac{ - 1}{4} }

Hence the point on the y-axis is (0, -¼)

Similar questions