Math, asked by aryan1649, 9 months ago

find a point on x axis which is at a distance of 2^5units from the point A(7,-4)​

Answers

Answered by bhavya0898
1

Answer:

Step-by-step explanation:

let coordinates of the point=(x,0)(as the poin lies on x axis)

x1=7. y1=-4

x2=x. y2=0

distance between 2 pts=√(x2-x1)^2+(y2-y1)^2

A/Q.....

2√5=√(x-7)^2+(0-(-4))^2

on squaring both sides....

20=x^2+49-14x+16

20=x^2+65-14x

0=x^2-14x+45

0=x^2-9x-5x+45

0=x(x-9)-5(x-9)

0=(x-9)(x-5)

x-9=0. x-5=0

x=9. x=5

therefore x=9,5

and coordinates of points.....(9,0)or(5,0)

Answered by Atul05
4

let coordinates of the point=(x,0)(as the poin lies on x axis)

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+16

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+45

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+45

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+450=x(x-9)-5(x-9)

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+450=x(x-9)-5(x-9)0=(x-9)(x-5)

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+450=x(x-9)-5(x-9)0=(x-9)(x-5)x-9=0. x-5=0

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+450=x(x-9)-5(x-9)0=(x-9)(x-5)x-9=0. x-5=0x=9. x=5

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+450=x(x-9)-5(x-9)0=(x-9)(x-5)x-9=0. x-5=0x=9. x=5therefore x=9,5

let coordinates of the point=(x,0)(as the poin lies on x axis)x1=7. y1=-4x2=x. y2=0distance between 2 pts=√(x2-x1)^2+(y2-y1)^2A/Q.....2√5=√(x-7)^2+(0-(-4))^2on squaring both sides....20=x^2+49-14x+1620=x^2+65-14x0=x^2-14x+450=x^2-9x-5x+450=x(x-9)-5(x-9)0=(x-9)(x-5)x-9=0. x-5=0x=9. x=5therefore x=9,5and coordinates of points.....(9,0)or(5,0)

Similar questions