Math, asked by devenderbandi456, 10 months ago

Find a polynomial whose zeroes are Tan 45º and Sec 60°.​

Answers

Answered by harendrachoubay
11

The quadratic polynomial is x^{2}-3x+2.

Step-by-step explanation:

Let the zeroes of polynomial = α and β

Given,

\alpha=\tan 45 and

\beta=\sec 60

To find, the polynomial = ?

\alpha=\tan 45

\alpha=1 [ ∵ \tan 45=1]

Also, \beta=\sec 60 [ ∵ \sec 60=2]

\beta=2

\alpha=1 and \beta=2

The quadratic polynomial is:

x^{2} -(\alpha+\beta)x+\alpha.\beta

=x^{2} -(1+2)x+1.2

=x^{2}-3x+2

Hence, the quadratic polynomial is x^{2}-3x+2.

Answered by SushmitaAhluwalia
6

A polynomial whose zeroes are Tan 45° and sec 60° is x^{2}-3x+2

  • Given, Tan 45° and sec 60° are roots of the polynomial.
  • If a, b are zeroes of a polynomial, then the polynomial can be written as

                 (x - a)(x - b)

  • Here,

                 a =  Tan 45°,     b = sec 60°

                 a = 1                   b = 2

  • Then the polynomial is

                ⇒ (x - 1)(x - 2)

                ⇒ x^{2}-2x-x+2

                ⇒ x^{2}-3x+2

             

Similar questions