Math, asked by navi3153, 10 months ago

Find a polynomial whose zeroes are tan2 45° and sec 60°.

Answers

Answered by Anonymous
6

\Huge{\red{\underline{\textsf{Answer}}}}

x^{2}  - 3x + 2

Step-by-step explanation:

\large{\red{\underline{\tt{Given:}}}}

Let us assume that the zeroes of the polynomial = α and β

 \implies\rm α=tan 45°

 \implies\rm β=sec 60°

\large{\red{\underline{\tt{To\:find:}}}}

The polynomial=?

\large{\red{\underline{\tt{Solution:}}}}

 \implies\rm α=tan 45........(given)

 \implies\rm α=1 (tan 45=1)

 \implies\rm β=sec 60.........(given)

 \implies\rm β=2

Therefore, α=1 and β=2

The quadratic polynomial will be –

 \implies\rm x^2-(α+β)x+α.β

 \implies\rm x^2-(1+2)x+1.2

 \implies\rm x^2-3x+2

Similar questions