Math, asked by pravinavarhade2590, 10 months ago

Find a quadratic equation such that the roots of the equation are -7/2 and -3/5.

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Quadratic\:eqn\to x^{2}+4.2x+2.1=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt:  \implies  \alpha  =  \frac{-7}{2}  \\  \\ \tt:  \implies   \beta =  \frac{-3}{5} \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Quadratic \: eqn = ?

• According to given question :

 \bold{For \: sum \: of \: zeroes} \\   \green{\tt:  \implies  \alpha  +  \beta  = \frac{-7}{2} +  \frac{-3}{5} } \\  \\  \bold{For \: product \: of \: zeroes} \\  \tt:  \implies  \alpha  \beta  =  \frac{-7}{2}\frac{-3}{5} \\  \\  \green{\tt:  \implies  \alpha  \beta  = 2.1 } \\  \\  \bold{For \: Quadratic \: eqn : } \\  \tt:  \implies   {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta = 0  \\  \\  {\tt:  \implies  {x}^{2}  - ( \frac{-7}{2} +  \frac{-3}{5})x +  2.1  = 0}

 \tt:  \implies {x}^{2}  -  (\frac{( - 7) \times 5  + ( - 3) \times 2}{10} )x + 2.1 = 0 \\  \\ \tt:  \implies  {x}^{2}   + ( \frac{41}{10} )x + 2.1 = 0 \\  \\  \green{\tt:  \implies  {x}^{2}  + 4.1x + 2.1 = 0}

Answered by Saby123
16

..

 \mathfrak{\huge{\purple{\boxed{\boxed{ Question \::- }}}}}

Find a quadratic equation such that the roots of the equation are -7/2 and -3/5.

 \mathfrak{\huge{\green{\boxed{\boxed{ Solution \::- }}}}}

In the above Question , the following information is given -

The roots of the Quadratic equation are -7/2 and -3/5.

Now,

A Quadratic Equation can be expressed as -

  { x } ^ 2 - sx + p = 0

Where -

S refers to the sum of the roots .

P refers to the product of roots.

Here -

Sum Of Roots = ( - 7 / 2 ) - ( 3 / 5 )

=> Sum = ( 41 / 10 )

Product Of Roots = ( -7 / 2 ) × ( -3 / 5 )

=> Product = 2.1

Hence the required equation becomes -

  { x } ^ 2 - ( \dfrac{41}{10} ) x + \dfrac{ 21}{10}  = 0 \\ \\ => 10 { x } ^ 2 - 41 x + 21 = 0

Similar questions