Math, asked by sbajaj544, 1 year ago

Find a quadratic equation whose roots are root 2 and 1/3

Answers

Answered by luckyjoshi615
5

x^2-(2+1/3)x+2×1/3

=x^2-7/3x+1/3

=3x^2-7x+1

Answered by abdul9838
8

 <b> <body \: bgcolor = "skyblue">

 \huge \: Hola \\  \\ </p><p></p><p>Hey  \: user  \: Here \:  is \:  Ans. \\  \\  </p><p></p><p></p><p> \huge \underline{Question} \\  \\ </p><p></p><p></p><p> \underline{Find  \: the  \: Quadratic  \: equation} \\  \\ </p><p></p><p></p><p> \huge \underline {Answer} \\  \\ </p><p></p><p> \underline{ \underline{Step \: by \:  Step \:  explaination} }\\  \\  \\  \\ </p><p> \\  \\  \huge \bf \: given \: that \\  \\   \bf \: \sqrt{2} \:  and \:  \frac{1}{3} </p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>

  \bf \: let \: be \\  \\  \bf \alpha  =  \sqrt{2}  \\  \\   \bf \:  \beta  =  \frac{1}{3}  \\  \\   \bf \underline{using \: to \: this \: formula} \\  \\  \bf \: (x -  \alpha )(x -  \beta ) \\  \\  \bf \: (x -  \sqrt{2} )(x -  \frac{1}{3} ) \\  \\  \bf \:  {x}^{2}  -  \frac{1}{3} x -  \sqrt{2} x +  \frac{ \sqrt{2} }{3  }  \\  \\  \bf \:  {x}^{2}  -  \frac{x}{3  }  -  \sqrt{2} x +  \frac{ \sqrt{2} }{3}  \\  \\  \bf \:  {x}^{2} -   \frac{ x - 3 \sqrt{2}x }{3}  +  \frac{ \sqrt{2} }{3} \\  \\  \bf \:   {x}^{2}  +  \frac{ \sqrt{2}  - 3 \sqrt{2}x - x }{3}  \\  \\ \bf \:    \frac{ {3x}^{2}   - 3 \sqrt{2} x - x +  \sqrt{2} }{3}  \\  \\  \bf \:  \frac{1}{3} (3 {x}^{2}  - 3 \sqrt{2} x - x +  \sqrt{2} ) \:  \: ans

 &lt;marquee \: behavior = slide \: bgcolor = "dark \: pink"&gt;

 \huge \: Thanks  \: for \:  asking. \\  \\ </p><p></p><p>Abdul \:  is  \: here \\  \\ </p><p></p><p> \huge \: Follow  \: me</p><p>

Similar questions