Math, asked by jahidhussainmansuri1, 3 months ago


Find a quadratic equation whose sum and product of the roots are -5/6 and -1.

Answers

Answered by amansharma264
7

EXPLANATION.

Quadratic equation.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -5/6.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = -1.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (-5/6)x + (-1) = 0.

⇒ x² + 5x/6 - 1 = 0.

⇒ 6x² + 5x - 6 = 0.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Anonymous
38

Given:

  • The sum of roots of a quadratic equation are -5/6
  • The products of the roots are - 1

To Find:

  • The quadrantic equation

Solution:

➤ Let the zeros be α and β respectively

{ \underline{ \frak{ \dag \: As  \: we  \: know \:  that  : }}}

  • The form of a quadratic equation is

➼ x² - (α+β)x + αβ

{ \underline{ \bf{ \bigstar \: According  \: to \:  the \:  question  : }}}

Case-----(i)

➱ The sum of the zeros is - 5/6

Now,

{ : \implies} \sf \:  \alpha  +  \beta  =  \dfrac{ - b}{a}

{ : \implies} \sf \:  \alpha  +  \beta  =  \dfrac{ - 5}{6}

Case-----(ii)

{ : \implies} \sf \:  \alpha  \beta  =  \dfrac{c}{a}

{ : \implies} \sf \:  \alpha  \beta  =  - 1

Substituting we get,

{ : \implies} \sf \:  {x}^{2}   -  ( \alpha  +  \beta )x +  \alpha  \beta

{ : \implies} \sf  {x}^{2}  - ( -  \dfrac{5}{6} )x + ( - 1)

{ : \implies} \sf  {x}^{2}  +  \dfrac{5}{6}x  - 1

{ : \implies} \sf 6 {x}^{2}  + 5x - 6

  • Hence solved.!!
Similar questions