Math, asked by rishikesh4369, 1 month ago

Find a quadratic equations if the sum and product of zeroes respectively: √2,1/3

Answers

Answered by SparklingBoy
19

\large \bf \clubs \:  Given :-

For a Quadratic Equation :

   

  • Sum of Zeros = √2

  • Product of Zeros = 1/3

-----------------------

\large \bf \clubs \:   To  \: Find :-

  • The Quadratic Equation.

-----------------------

\large \bf \clubs \:   Main  \:  Concept : -

☆ If sum and product of zeros of any quadratic polynomial are S and P respectively,

Then,

The quadratic Equation is given by :-

 \large\bf  {x}^{2}  - S \: x + P=0

-----------------------

\large \bf \clubs \:  Solution  :-

Here,

  • Sum = S = √2

  • Product = P = 1/3

So,

Required Equation should be :

 \bf  {x}^{2}  - S \: x + P=0

:\longmapsto  \tt{x}^{2}  - \sqrt{2} x + \dfrac{1}{3}=0.

 \Large\purple{:\longmapsto\pmb{3{x}^{2}  -3\sqrt{2}\:x +1=0}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by SparklingThunder
17

Step-by-step explanation:

\purple{ \sf \clubs \:Given :  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \\  \sf \: A \:  Quadratic  \: equation : \:  \:  \:   \\   \mapsto\sf Sum \: of \: zeroes =  \sqrt{2}   \:  \:  \: \\   \mapsto \sf Product \: of \: zeroes =  \frac{1}{3}  \\   \purple{ \huge{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}} \\ \purple{ \sf \clubs \:To  \: find :  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:   \\  \sf The  \: Quadratic \:  Equation  \\ \purple{ \huge{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}} \\  \purple{ \sf \clubs  \: Main \:  Concept :  } \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \\    \sf\purple{\bigstar} \: If \: sum \: and \: products \: of  \\  \sf zeroes \: of \: any \: quadratic \: polynomial \\  \sf are \: taken \: as \: S  \: and \:  P \: respectively, \\  \sf \: then \: the \: quadratic \: equation \: is  \\  \sf \: given \: by  :  \\ \purple{\bf  {x}^{2} - Sx +  P = 0}  \\ \purple{ \huge{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}} \\  \sf\purple{ \clubs \: Solution :} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \\  \sf S =  \sqrt{2}  \\  \sf P =  \frac{1}{3}  \\  \sf So,\: Required \:  Equation \:  is :  \\ \sf {x}^{2} - Sx +  P = 0 \\  \sf  \longmapsto \: {x}^{2} -  \sqrt{2} x +   \frac{1}{3} = 0 \\  \sf \longmapsto \: 3{x}^{2} -  3\sqrt{2} x + 1 = 0 \\  \sf \orange{Which \:  is \:  the \:  required} \\  \sf \orange{Answer  \: .}  \\ \purple{ \huge{\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }}} \\

Similar questions