Math, asked by arfea, 1 year ago

Find a quadratic poly, the sum of zeroes is 0 and one zero is 5

Answers

Answered by Anonymous
129
let,
the roots of the required polynomial be   α and β
given, α = 5
sum of the roots = 0
         ⇒ α + β = 0
         ⇒ 5 + β  = 0
         ⇒ β = -5
therefore, the roots of the polynomial are 5 and -5
the quadratic polynomial with roots α and β is  x²- (α+β)x + αβ= 0
here, α =5 ,β = -5
required quadratic polynomial = x² -(5-5)x + 5(-5)
                                                 = x² -0 -25
                                                 = x²-25
Answered by suhana2004
44

 \alpha  +  \beta  = 0 \\  \alpha  = 5 \\  \beta  =  - 5 \\  \alpha  \beta  =  - 25 \\ required \: polynomial \\  = k( {x}^{2}  - x( \alpha  +  \beta ) +  \alpha  \beta ) \\  =  {x}^{2}  - 0x  - 25 \\  =  {x}^{2}  - 25

Similar questions