Math, asked by dharmendrasisodiya, 2 months ago

find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively :
 -  \frac{1}{3}  \:  \frac{1}{3}


Attachments:

Answers

Answered by Anonymous
48

Answer:

{\large{\pmb{\sf{★Given...}}}}

Sum of Zeroes = -1/3

Product of Zeroes = 1/3

{\large{\pmb{\sf{★To \:  Find...}}}}

Quadratic Polynomial...?

 \: {\large{\pmb{\sf{★Used  \: Formula...}}}}

 \boxed{ \sf{General \:  Form =k \bigg[ {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \bigg] }}

 {\large{\pmb{\sf{★Solution...}}}}

From given, α + β = -1/3 , α β = 1/3

Substitute in formula,

 : { \implies { \sf{k \bigg[ {x }^{2}   -  \bigg( \frac{ - 1}{3}   \bigg)x +  \frac{1}{3} \bigg]}}} \\

 \:  : { \implies { \sf{k \bigg[  {x   }^{2} +  \frac{1}{3}  x +  \frac{1}{3} \bigg]}}} \\

By Taking LCM,

 \:  : { \implies { \sf{k \bigg[ \frac{3 {x}^{2} + x + 1 }{3}  \bigg]}}} \\

Now Taking k = 3,

 \:  : { \implies { \sf{3 \bigg[ \frac{3 {x}^{2} + x + 1 }{3}  \bigg]}}} \\

 \: \:  : { \implies { \sf{  \cancel{3} \bigg[ \frac{3 {x}^{2} + x + 1 }{ \cancel{3}}  \bigg]}}} \\

 : { \implies{ \bf{3 {x}^{2}  + x + 1}}}

{\large{\pmb{\sf{★Final Answer...}}}}

Therefore, 3x² + x + 1 is our required polynomial.

Similar questions