Math, asked by anzzahmed7708, 10 months ago

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

Answers

Answered by amitnrw
4

Answer:  Sum of Zeroes of a polynomial = 1/4  & product of polynomial = -1

To find : polynomial

Solution:

Polynomial

= x²  - (sum of zeros)x + products of zeroes

= x²   - (1/4)x  + (-1)

=x²  - x/4  - 1

= 4x²  - x  - 4

another way

let say  zeroes are  α  & β

then polynomial = (x - α)(x - β)

= x² - αx  - βx  + αβ

= x² - (α + β)x  + αβ

α + β = 1/4

αβ = -1

= x²  - x/4  - 1

= 4x²  - x  - 4

Learn More:

the sum of the zeros of the polynomial 2x cube minus 5 x square - 14 ...

https://brainly.in/question/15116481

Find the zeroes of the quadratic polynomial 4x^2+8x and verify the ...

https://brainly.in/question/3043934

find the sum and product of zeros of quadratic polynomials P(x)=6x² ...

https://brainly.in/question/7846252

Answered by Anonymous
3

Step-by-step explanation:

\underline{\:\large{\textit{1) \ \  \sf 1/4, -1 \: :}}}

\frak{Given}\begin{cases}\sf{Sum \ of \ Zeroes \: (\alpha \: + \: \beta) = \frac{1}{4}}\\\sf{Product \ of \ Zeroes = \ (\alpha \ \beta) = -1}\end{cases}

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x) = x^2 - (\alpha + \beta)x + \alpha \: \beta \\\\\\:\implies\sf p(x) = x^2 - \dfrac{1}{4}x + (- 1)  \\\\\\:\implies\sf p(x) = x^2 - \dfrac{1}{4}x - 1 \\\\\\:\implies\boxed{\frak{\purple{p(x) = 4x^2 - x -1}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀

\underline{\:\large{\textit{2) \ \  \sf 1, 1 \: :}}}

\frak{Given}\begin{cases}\sf{Sum \ of \ Zeroes \: (\alpha \: + \: \beta) = 1 }\\\sf{Product \ of \ Zeroes \:  (\alpha \ \beta) = 1}\end{cases}

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x) = x^2 - (\alpha + \beta)x + \alpha \: \beta \\\\\\:\implies\sf p(x) =  x^2 - 1x + 1 \\\\\\:\implies\boxed{\frak{\purple{p(x) = x^2 - x + 1}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀

\underline{\:\large{\textit{3) \ \  \sf 4,1 \: :}}}

\frak{Given}\begin{cases}\sf{Sum \ of \ Zeroes \: (\alpha \: + \: \beta) = 4 }\\\sf{Product \ of \ Zeroes \:  (\alpha \ \beta) = 1}\end{cases}

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x) = x^2 - (\alpha + \beta)x + \alpha \: \beta \\\\\\:\implies\boxed{\frak{\purple{p(x) = x^2 - 4x + 1}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀

\qquad{\underline{\underline{\bigstar \: \bf \ Some \ Information \ about \ polynomial\: :}}}\\ \\

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

Similar questions