Math, asked by adityaingawale15feb, 10 months ago

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4, -1

(ii) 1,1

(iii) 4, 1

Answers

Answered by ShírIey
40

\underline{\:\large{\textit{1) \ \  \sf 1/4, -1 \: :}}}

\frak{Given}\begin{cases}\sf{Sum \ of \ Zeroes \: (\alpha \: + \: \beta) = \frac{1}{4}}\\\sf{Product \ of \ Zeroes = \ (\alpha \ \beta) = -1}\end{cases}

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x) = x^2 - (\alpha + \beta)x + \alpha \: \beta \\\\\\:\implies\sf p(x) = x^2 - \dfrac{1}{4}x + (- 1)  \\\\\\:\implies\sf p(x) = x^2 - \dfrac{1}{4}x - 1 \\\\\\:\implies\boxed{\frak{\purple{p(x) = 4x^2 - x -1}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀

\underline{\:\large{\textit{2) \ \  \sf 1, 1 \: :}}}

\frak{Given}\begin{cases}\sf{Sum \ of \ Zeroes \: (\alpha \: + \: \beta) = 1 }\\\sf{Product \ of \ Zeroes \:  (\alpha \ \beta) = 1}\end{cases}

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x) = x^2 - (\alpha + \beta)x + \alpha \: \beta \\\\\\:\implies\sf p(x) =  x^2 - 1x + 1 \\\\\\:\implies\boxed{\frak{\purple{p(x) = x^2 - x + 1}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀

\underline{\:\large{\textit{3) \ \  \sf 4,1 \: :}}}

\frak{Given}\begin{cases}\sf{Sum \ of \ Zeroes \: (\alpha \: + \: \beta) = 4 }\\\sf{Product \ of \ Zeroes \:  (\alpha \ \beta) = 1}\end{cases}

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x) = x^2 - (\alpha + \beta)x + \alpha \: \beta \\\\\\:\implies\boxed{\frak{\purple{p(x) = x^2 - 4x + 1}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀

\qquad{\underline{\underline{\bigstar \: \bf \ Some \ Information \ about \ polynomial\: :}}}\\ \\

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

Similar questions