Math, asked by rajrs1966, 3 months ago

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes  respectively:-  (i)  2/3 , -4 (ii) -1/root2, 1/root 2 (iii) root 5 , -2 (iv) -1/root 2, 2/3​

Answers

Answered by vipashyana1
8

Answer:

(i) \alpha +  \beta   =  \frac{2}{3}, \:   \alpha  \beta  = ( - 4) \\ Quadratic \:  polynomial  \\  =  {x}^{2}  -  (\alpha  +  \beta )x +  \alpha  \beta  \\   =  {x}^{2}  -  \frac{2}{3} x + ( - 4) \\  =  {x}^{2}  -  \frac{2x}{3}  - 4 \\ multiply \: each \: term \: by \: 3 \\  =  {x}^{2}  \times 3 -  \frac{2x}{3}  \times 3 - 4 \times 3 \\  = 3 {x}^{2}  - 2x - 12 \\ (ii) \alpha   + \beta  =  \frac{( - 1)}{ \sqrt{2} } , \:   \alpha  \beta  =  \frac{1}{ \sqrt{2} }  \\ Quadratic \:  polynomial  \\  =  {x}^{2}  -  (\alpha  +  \beta )x +  \alpha  \beta  \\  =  {x}^{2}  -  \frac{( - 1)}{ \sqrt{2} } x +  \frac{1}{ \sqrt{2} }  \\  =  {x}^{2}  +  \frac{x}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} }  \\ multiply \: each \: term \: by  \: \sqrt{2}  \\  =  {x}^{2}  \times  \sqrt{2}  +  \frac{x}{ \sqrt{2} } \times  \sqrt{2}   +  \frac{1}{ \sqrt{2} }  \times  \sqrt{2}  \\  =  \sqrt{2}  {x}^{2}  + x + 1 \\ (iii) \alpha +  \beta   =   \sqrt{5} , \:   \alpha  \beta  = ( - 2) \\ Quadratic \:  polynomial  \\  =  {x}^{2}  -  (\alpha  +  \beta )x +  \alpha  \beta  \\  =  {x}^{2}  -  \sqrt{5} x + ( - 2) \\  =  {x}^{2}  -  \sqrt{5} x - 2 \\ (iv) \alpha +  \beta   =  \frac{( - 1)}{ \sqrt{2} }, \:   \alpha  \beta  =  \frac{2}{3}  \\ Quadratic \:  polynomial  \\  =  {x}^{2}  -  (\alpha  +  \beta )x +  \alpha  \beta  \\  =  {x}^{2}  -  \frac{( - 1)}{ \sqrt{2} } x +  \frac{2}{3}  \\  =  {x}^{2}  +  \frac{x}{ \sqrt{2} }  +  \frac{2}{3}  \\  multiply \: each \: term \: by  \:  3 \sqrt{2}  \\  =  {x}^{2}  \times 3 \sqrt{2}  +  \frac{x}{ \sqrt{2} } \times 3 \sqrt{2}   +  \frac{2}{3}  \times 3 \sqrt{2}  \\  = 3 \sqrt{2}  {x}^{2}  + 3x + 2 \sqrt{2}

Similar questions