Math, asked by s1074sanjana3761, 2 months ago

Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively
(v) -1/4,1/4​

Answers

Answered by ADARSHBrainly
5

{\underline{\underline{\bold{Question:}}}}

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively - \dfrac{  1}{4} , \dfrac{  1}{4} .

{\underline{\underline{\bold{Answer :}}}}

{\underline{\sf{Given:}}}

  • Sum of the Zeroes = - \dfrac{  1}{4}

  • Product of the Zeroes = \dfrac{  1}{4}

{\underline{\sf{To \:  find :}}}

  • We have to find Quadratic Polynomial.

{\underline{\sf{Solution:}}}

● We know that Quadratic Polynomial is always in the form of ax²+ bx + c. Also

{\underline{\boxed{\sf{Sum \:  of \:  the \:  Zeroes = \alpha  +  \beta  =  \dfrac{ - b}{a}  }}}}

and

{\underline{\boxed{\sf{Product \:  of \:  the \:  Zeroes = \alpha    \beta  =  \dfrac{ c}{a}  }}}}

● So from here, value of b & a is,

{\longmapsto{\sf{  \alpha  +  \beta   =  \dfrac{-b}{a} =   - \bigg( \cfrac{ - 1}{4} \bigg)   }}} \\  {\longmapsto{\sf{   \dfrac{ - b}{a}   =     \frac{  1}{4}   }}}

Here

  • a = 4
  • b = 1

● Second, value of c is

{\longmapsto{ \sf{ \alpha  \beta =  \dfrac{c}{a} =  \bigg( \dfrac{1}{4}  \bigg)  }}}

Here

  • c = 1
  • a = 4

Now we have

  • a = 4
  • b = 1
  • c = 1

Substituting the values in the standard form of quadratic polynomial :-

 {\large{\sf{\implies{a {x}^{2}   + bx + c}}}} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {\large{\sf{\implies{(4){x}^{2}   + (1)x + (1)}}}} \\ { \underline{ \boxed{\large{ \red{\sf{\implies{4 {x}^{2}   + x + 1}}}}}}}

So, here Quadratic polynomial is 4x² + x + 1 .

Similar questions