Math, asked by sskatsvs8598, 11 months ago

Find a quadratic polynomial sum of whose zeroes is 4 and product of zeroes is-1/4

Answers

Answered by habishajahan93
4

Answer:

p(x) = x ^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\ p(x) = x ^{2}  - 4 -  \frac{1}{4 }  \\ p(x) = 4 {x}^{2}  - 4 - 1

I hope you understood this sum

Answered by TheEternity
2

Given,  \: Sum \: of \: zeroes \:  = 1/4</p><p> \\ and  \: product \:  of  \: zeros = \: -1 \\ </p><p>Then,  \: the \: quadratic  \: polynomial \\  = k \: [ {x}^{2} - (sum \: of \: zeroes)x + product \: of \: zeroes ] \\ k( {x}^{2}  - ( \frac{1}{4} )x - 1 \\  = k( {x}^{2}  -  \frac{x}{4}  - 1) \\  = k( \frac{4 {x}^{2} - x - 4 }{4 } ) \\ If \: k = 4, \: then \:  the \:  required \: quadratic \: polynomial \: is  \\ 4 {x}^{2}  - x - 4</p><p>

Similar questions