Math, asked by sreeragpk6013, 10 months ago

Find a quadratic polynomial the sum and difference of whose zeroes are 2and0 respectively

Answers

Answered by TheMoonlìghtPhoenix
3

Answer:

Step-by-step explanation:

Let the zeroes of polynomial be α and β

We are given that

α+β= 2___________________________________(1)

α-β= 0_____(A)

so we can say that from equation A

α=β _______________(2)

And so the product of zeroes will be either \alpha ^{2}  or \beta ^{2}

So my quadratic equation will be

x^{2} -(\alpha +\beta )x + (\alpha \beta )

\implies x^{2} -2x+\alpha ^{2} \\OR\\\implies x^{2} -2x+\beta^{2} \\

Answered by amitkumar44481
9

AnsWer :

x²-2x +1.

Given :

  • Sum and difference of whose Zeroes are 2 and 0.

To Find :

Quadratic polynomial.

Solution :

•°• Let first zero be alpha

and second zeros be beta.

A/Q,

  \tt {\fbox{\large{\alpha  +  \beta  = 2.}}}   \:  \:  \:  - (1)

  \tt{\fbox{\large{\alpha   -   \beta  = 0.}}} \:  \:  \: -  (2)

\rule{120}1

Adding Both equation, We get.

  \tt \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \alpha  +  \beta  = 2.

 \tt\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \alpha  -  \beta  = 0. \:  \:  \:  \:  \:  \:  \: }

 \tt\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 \alpha  \:  \:  \:  \:  \:  \:  = 2.

  \tt\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \alpha \:  \:  \:  \:  \:  \:   = 1.\:  \:  \:  \:  \:  \:  \: }

Now, Putting the value of alpha in equation 1.

 \tt\dashrightarrow  \alpha  +  \beta  = 2.

 \tt\dashrightarrow  \beta  = 1.

\rule{200}2

We have, Formula to form Quadratic polynomial.

 \tt{\fbox{\large{k( {x}^{2}   -  sx + p)}}}

Where as,

  • k Constant term.
  • s Sum of zeros.
  • p product of zeros.

\tt\dashrightarrow  k [ {x}^{2}  - ( \alpha  +  \beta ) x + ( \alpha  \beta )]

 \tt\dashrightarrow k( {x}^{2}  - 2x + 1).

Therefore, Our Equation become x²- 2x +1.

Similar questions