Find a quadratic polynomial , the sum and product of whose zeroes are 0 and - root2, respectively
Answers
Answered by
15
• According to given question :
Answered by
21
AnswEr:-
Quadratic polynomial = x² - √2
Given:-
☛ Sum of zeroes = 0
☛ Product of zeroes = -√2
To find:-
☛ Quadratic polynomial = ?
Solution:-
Let the zeroes of polynomial be α & β
The standard form of an quadratic polynomial is :-
↠x² - (Sum of zeroes)x + (Product of zeroes)
↠ x² - (α + β)x + αβ
Here,sum of zeroes = 0
∴ α + β = 0
And,product of zeroes = -√2
∴ αβ = -√2
⋆ QUADRATIC POLYNOMIAL:-
⇒ x² - (0)x + (-√2)
⇒ x² - 0x - √2
⇒ x² - √2
∴Quadratic polynomial = x² - √2
Similar questions