Math, asked by gulmehak2878, 10 months ago

Find a quadratic polynomial , the sum and product of whose zeroes are 0 and - root2, respectively

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Equation=x^{2}-\sqrt{2}=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Sum \: of \: zeroes = 0 \\  \\  \tt:  \implies Product \: of \: zeroes =  -  \sqrt{2}  \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Quadratic \:equation = ?

• According to given question :

 \circ \:  \tt{Let \:  \alpha  \: and \:  \beta  \: be \: the \: zeroes} \\  \\   \tt \circ  \: sum \: of \: zeroes = 0 \\  \\  \tt: \implies  \alpha  +  \beta  = 0 \\  \\  \tt \circ  \: product \: of \: zeroes =  -  \sqrt{2}  \\  \\  \tt: \implies  \alpha  \beta  =  -  \sqrt{2}  \\  \:  \\  \bold{As \: we \: know \: that}  \\  \tt:  \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes)  = 0\\  \\ \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x  +  \alpha  \beta  = 0 \\  \\  \text{Putting \: given \: values} \\ \tt:  \implies  {x}^{2}  - 0 \times x + ( -  \sqrt{2} ) = 0 \\  \\  \green{\tt:  \implies {x}^{2}  -  \sqrt{2}  = 0}

Answered by EliteSoul
21

AnswEr:-

Quadratic polynomial = x² - 2

\rule{200}{1}

Given:-

Sum of zeroes = 0

Product of zeroes = -2

To find:-

Quadratic polynomial = ?

Solution:-

Let the zeroes of polynomial be α & β

The standard form of an quadratic polynomial is :-

x² - (Sum of zeroes)x + (Product of zeroes)

x² - (α + β)x + αβ

Here,sum of zeroes = 0

∴ α + β = 0

And,product of zeroes = -2

∴ αβ = -√2

\rule{200}{1}

⋆ QUADRATIC POLYNOMIAL:-

⇒ x² - (0)x + (-√2)

⇒ x² - 0x - √2

x² - 2

Quadratic polynomial = x² - 2

Similar questions