Math, asked by royalpatialaboutique, 11 months ago

Find a quadratic polynomial, the sum and product of whose zeroes are √2 and -3/2
respectively. Also, find its zeroes.

Answers

Answered by raushan6198
6

Step-by-step explanation:

 \alpha  +  \beta  =  \sqrt{2}  \\  \alpha  \beta  =  \frac{ - 3}{ 2}  \\  \\  {x}^{2}  - ( \alpha  +  \beta ) {x}  +  \alpha  \beta  = 0 \\  \\  =  >  {x}^{2}  -  \sqrt{2} x -  \frac{3}{2}  = 0 \\  =  > 2 {x}^{2}  - 2 \sqrt{2} x - 3 = 0 \\  =  > 2 {x}^{2}  - 3 \sqrt{2}x  +  \sqrt{2} x - 3 = 0 \\  =  >  \sqrt{2}  \:  \sqrt{2} x( \sqrt{2} x - 3) + 1( \sqrt{2} x - 3) = 0 \\  = ( \sqrt{2} x + 1)( \sqrt{2x}  - 3) = 0 \\  =  >  \sqrt{2} x + 1 = 0 \:  \: or \:  \sqrt{2} x - 3 = 0 \\  =  >  \sqrt{2} x =  - 1 \:  \:  \: or \:  \sqrt{2} x  = 3 \\  =  > x =   \frac{ - 1}{ \sqrt{2} }  \:  \: or \:  \: x =  \frac{3}{ \sqrt{2} }

Similar questions