Math, asked by hv23061975, 10 months ago

Find a quadratic polynomial, the sum and product of whose zeroes are

-6 and 8, respectively. ​

Answers

Answered by Anonymous
25

{\huge{\red{\sf{Given}}}}\begin{cases}\leadsto Sum\:of\:zeroes\:is\:-6\\\leadsto Product\:of\:zeroes\:is\:8\end{cases}

{\huge{\red{\sf{To\:Find}}}}\begin{cases}\leadsto To\:find\:the\:quadratic\:polynomial\end{cases}

\huge\red{\underline{\bf{\green{Answer}}}}

We have,

  • Sum of zeroes as -6.
  • Product of zero as 8.

So, we know,

\large\red{\boxed{\sf{\purple{p(x)=k[x^{2}-(\alpha+\beta)x+\alpha\beta]}}}}

where,

  • \alpha&\beta are zeroes.
  • p(x) is required polynomial.
  • k is a non-zero constant.

______________________________________

Using above formula,

\implies p(x) =k[x^{2}-(-6)x+8]

\implies p(x) =k[x^{2}+6x+8]

{\underline{\boxed{\red{\bf{\mapsto p(x) =k[x^{2}+6x+8]}}}}}

Answered by Anonymous
2

Step-by-step explanation:

 \alpha  +  \beta  =  - 6

 \alpha  \beta  = 8 \\ p(x) = x ^{2}  - x( \alpha  +  \beta ) + ( \alpha  \beta )

p(x) = x ^{2}  - x( - 6) + (8)

p(x) = x ^{2}  + 6x + 8

Similar questions